NP and Latin Squares	Instructor: Padraic Bartlett
	Homework 1: P vs. NP; definitions

Instructions: Five classes of problems are listed below. For each / for as many as you want, attempt to do the following:

- Find an algorithm that solves the problem. Check the runtime of your algorithm. (It will likely be huge.)
- Show that your problem is in NP: i.e. find an algorithm that will take in an instance of your problem and a "proof" that claims to show that instance is true, and check in polynomial time whether that solution holds.
- Show that if you can solve this problem "quickly," you can solve 3SAT "quickly." In other words, find a way to transform any algorithm A that solves this problem into an algorithm that solves 3SAT, such that if the runtime of A is $t(n)$, the runtime of this new 3SAT solver is $\operatorname{poly}(t(n))$.
- Then, try to improve your algorithm in such a way that your problem is in P. (This step may be difficult.)

Homework Problems

1. Given an arbitrary $n \times n$ partial latin square P, does it have a completion to an $n \times n$ latin square L,in which all of its rows and columns are filled?
2. In a graph $G=(V, E)$, a Hamiltonian cycle is a sequence of vertices and edges $\left(v_{1}, e_{12}, v_{2}, e_{23}, \ldots v_{n}, e_{n 1}\right.$, such that

- each vertex in V shows up in our sequence exactly once, and
- the edges $e_{i j}$ are all edges linking vertex v_{i} to vertex v_{j}.

In other words, a Hamiltonian cycle is a tour that starts and stops at the same vertex, and along the way visits every other vertex exactly once.
Given an arbitrary graph G on n vertices, does it have a Hamiltonian cycle?
3. A 3-coloring of a graph G is a way to assign the colors $\{1,2,3\}$ to the vertices of a graph in such a way that no edge has both of its endpoints colored the same color.

Given a graph G, does it have a 3 -coloring?
4. Take a graph G. We can play a solitaire game, called pebbling, on this graph. We define this as follows:

- Setup: a graph G. Also, to every vertex of G, we assign some number of "pebbles," which we imagine are stacked on top of each vertex.
- Moves: Suppose we have an edge e_{12} connecting v_{1} to v_{2}, and another edge e_{23} connecting v_{2} and v_{3}. Suppose further that there is a pebble on v_{1} and v_{2}. We can then "jump" the pebble v_{1} over the pebble at v_{2} to v_{3} : i.e. we can remove one pebble from each of v_{1} and v_{2}, and place a pebble on v_{3}.
- A game is cleared if we can reduce it to having only one pebble on the entirety of the board.

Given an arbitrary graph G on n vertices, and some arrangement of n pebbles on G, can this game ever be "cleared"?
5. Consider the following solitare game, which is played on a $n \times n$ board:

- To start, we place red stones on some of the squares of our board, and blue stones on other squares of our board. We do not have to fill every square of our board; some places may be left blank.
- The goal of our game is to remove stones one by one until we satisfy both of the following conditions:
- Every row contains at least one stone.
- Conversely, no column contains stones of both colors in it.

Here is an example board, along with a winning state:

For some initial configurations, this game is impossible to win (find one!)
The problem is the folowing: given a starting board state, is is possible to win?

