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Homework + Lecture 4: Pólya’s Random Walk Problem

Week 2 Mathcamp 2014

Consider the following puzzle posed by Polya (amongst others):

Question 1. Suppose that you have placed a random walker placed at the origin of a d-
dimensional integer lattice Zd, and let it wander. Given enough time, will the random
walker return to the origin? Or is there a nonzero chance that the random walker will
wander forever without returning to the origin?

Let’s turn to Z1 as a quick warm-up. Our question, here, is whether a random walker
starting at some point on the integer line (say the origin) will always return to the origin,
or whether there’s a nonzero chance that it wanders off forever.

However: all of our tools, as currently formulated, only apply to finite graphs! To study
an infinite graph like Zd, then, we need to do the following:

• Let x be whichever node we’re designating as the origin, and G(r) be the graph formed
by taking all of the vertices connected to x by paths of length at most r.

• Turn this into a electrical network problem by soldering all of the vertices that are
distance r from x together into one big ball (i.e. identifying all of these vertices to-
gether,) grounding them, putting one unit of voltage at x, and making all of the edges
resistors with resistance 1. Then, via our earlier discussions, we can talk about the
probability that a drunkard starting at x will make it to this point at distance r before

returning to x. Denote this quantity as p
(r)
esc.

• Let pesc be the limit limr→∞ p
(r)
esc. If this is nonzero, then there is some nonzero chance

that our walker will wander forever; if this is zero, then our walker must eventually
return to the origin.

• Notice that if it must eventually return to the origin, then it must eventually make it
to any vertex w in G! This is because starting from the origin, we always have some
nonzero chance to make it to w, and (because we return to the origin infinitely many
times) we get infinitely many tries.

If G is a graph on which we return infinitely many times to the origin, we call G recurrent;
if it is a graph where there is a chance that we will never return to the origin, we call G
transient.

Theorem 2. The one-dimensional lattice graph Z is recurrent.

Proof. Let 0 be the origin, without any loss of generality. Using our earlier discussion, we
know that

p(r)
esc =

i0
C0

=
1

C0
· v(0)

Reff
=

1

C0Reff
.
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We know that the resistance of a string of r resistors in a row is r, from our earlier discussion
about resistors in series. Consequently, because there are two such strings in parallel from
the origin to distance r for any r, we know that their combined resistance is 1

1
r

+ 1
r

= r
2 .

Therefore, because the conductance of the origin is 1 + 1 = 2, we have

p(r)
esc =

1

2 · r/2
=

1

r
.

The limit as r goes to infinity of this quantity is 0; therefore, this walk is recurrent.

That wasn’t so hard! However, dimensions greater than one pose greater difficulties. In
particular, dealing with something like the resistance of an integer lattice is not something
that our techniques are yet equipped to deal with. Symmetry arguments allow us to group
some clusters of vertices together, but not as many as we like; as well, our series/parallel
arguments are not very effective at dealing with vertices on a mesh!

As it turns out, these are not the only tools we have. Consider the following theorem
of Rayleigh, that at first glance may seem too trivial to merit proving:

Theorem 3. If any of the individual resistances in a circuit increase, then the overall
effective resistance of the circuit can only increase or stay constant; conversely, if any of
the individual resistances in a circuit decrease, the overall effective resistance of the circuit
can only decrease or stay constant.

In specific, cutting wires (setting certain resistances to infinity) only increases the effec-
tive resistance, while fusing vertices together (setting certain resistances to 0) only decreases
the effective resistance.

From a circuit perspective, this seems very trivial. If I replace a 1Ω resistor with a
10000Ω resistor, surely the overall resistance of my circuit has increased! However, from
the random walk perspective (graph with source and sink, walker starts at source, wanders
until it hits the sink or the source again) this is actually a very deep and surprising result.
Effectively, we’re claiming that no matter how you add edges to a graph, you can never
increase the chance that a random walker encounters the source before the sink! Similarly,
deleting edges can never make it less likely for our random walker to encounter the source
before the sink.

For the rest of this talk, we’re going to stick with the circuit perspective (and in par-
ticular not prove this result.) It’s a beautiful but technically tricky thing to formally prove
given the language of this class; if we have time on Saturday we’ll return to it! For now,
though, let’s see what it can do for us:

Theorem 4. The two-dimensional lattice graph Z2 is recurrent.

Proof. Take our graph, turn it into an electrical network with origin = (0, 0), and perform
the following really clever trick: for every r, let Vr be the collection of all of the vertices
that are distance r from the origin under the taxicab metric (i.e. shortest length of a path.)
Take our graph and short all of Vr’s vertices into one huge clump, for each r: i.e. take the
collection of all of the vertices at distance r, and just stick them all together! In essence,
we are adding wires between all of the vertices at distance r with resistance 0, which (if you
think of these wires not as connecting vertices that didn’t use to be connected, but rather
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as replacing the wires of resistance “∞” between such vertices) is decreasing the resistance
between certain vertices. We know that this reduces the overall resistance, because of
Rayleigh’s principle; therefore, we know that if this graph is recurrent, Z2 must be as well.

What does this process do to the graph (Z2)(r)? Well, it produces the following picture:

Note that there are 8n + 4 edges between the vertices at distance n and the vertices at
distance n + 1 (a task we reserve for the homework!)

So: what is the resistance here? Well: if there are 8n + 4 resistors between node n
and node n + 1, we can regard our graph as equivalent to the path on {0, . . . r} where the
resistance between vertices n and n + 1 is 1

8n+4 :

By adding these resistances together, we can finally calculate the effective resistance of this
“shorted” (Z2)(r):

r∑
i=1

1

8i + 4
.

This sum diverges to infinity! (If you haven’t seen why this is this before, talk to me at

TAU.) Therefore, the current on these graphs, and thus the p
(r)
esc’s,must converge to 0. So

(Z2)(r) is also recurrent.
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1. Prove the claim we made in class: that in Z2, the number of edges connecting points
at distance n from the origin to points at distance n + 1 is 8n + 4.

2. Suppose we are in Z3. How many edges are there between points at distance n and
points at distance n + 1 here?

3. Suppose that we have a random walker starting at some arbitrary point ~a in Z3, that
at each time step picks one of the three possible axes and moves either one unit in
the positive or negative direction with equal probability. Must our random walker
eventually wander onto the plane x + y + z = 0?

4. Suppose we have a random walker on the graph given by any of the 11 regular or
semiregular tilings of the plane:... ...... ...

Some example tilings. More pictures and definitions at this Wikipedia link:

http://en.wikipedia.org/wiki/Tiling by regular polygons.

Will our random walker return to v with probability 1? Or is it possible that our
random walker will wander forever on one of these tilings?
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