
Electrical Networks and Graphs Professor: Padraic Bartlett

Homework + Lecture 1: Electrical Networks and Random Walks

Week 2 Mathcamp 2014

(Relevant source material: Doyle and Snell’s “Random walks and electrical networks,”
which is available online here! Also, sections of Bollobas’s text on Modern Graph Theory,
various articles I’ve read, and probably other random things.)

Consider the following problem:

Problem. (The Lost Hedgehog’s Walk.) Oh nyo! A hedgehog has gotten lost in the fog.
Will it ever come home?

Specifically: consider the following model for a lost hedgehog’s very simplified map of
the universe:

H x y B

There are in this world four possible locations: H, the hedgehog’s camp, B, an all-devouring
black hole that absorbs everything that accidentally wanders into it, and two intermediate
locations x and y. Lost hedgehogs, left to its own devices, will randomly wander between
these locations. Specifically: if it is at some vertex that is neither H nor B at time t, at
time t + 1 it will choose via coinflip one of the neighboring vertices to its current location
and wander there. If the hedgehog ever makes it home (i.e. wanders to H,) it is safe and
is merrily reunited with its family. If it wanders to B, it is sucked into the black hole and
never will be seen again.

Suppose the lost hedgehog starts at x. What are the hedgehog’s chances of making it
home? How can we model these kinds of behaviors?

1 Random Walks

For a model as simple as this one, it’s remarkably simple to determine what happens!
Specifically, let’s consider the hedgehog’s chances of making it home starting from any
vertex v, not just x: for notational convenience, denote this probability as p(v). What do
we know about these values?

• p(H) = 1: if the hedgehog starts at home, it’s happy and safe!

• p(B) = 0: if we’ve accidentally left the hedgehog inside of the black hole, we’re not
going to see it anytime soon.

• For v 6= H,B, we have p(x) = 1
2p(H) + 1

2p(y), and p(y) = 1
2p(x) + 1

2p(B). This is
because a hedgehog at any vertex that’s neither home or the black hole will choose
between the two neighbors available to it with the same probability (1/2), and then
travel to that respective vertex via that edge. So, its chances of survival are 1

2 · its
chances at the vertex to its left, plus 1

2 · its chances at the vertex to its right.
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This gives us the following four linear equations in four unknowns:

• p(B) = 0,

• p(x) = p(H)+p(y)
2 ,

• p(H) = 1,

• p(y) = p(x)+p(B)
2 ,

Solving this system tells you that p(2) = 1
3 , p(3) = 2

3 , and thus that our specific hedgehog
at vertex x has a 2/3rds chance of making it home.

Let’s consider a trickier version of the above problem. Suppose that instead of just
a four-vertex path, we have some graph G that we want to model a hedgehog’s walk on,
with selected vertices H and B that denote the hedgehog’s home / a point of no return,
respectively; this lets us model things like city blocks. Also, let’s attach weights wxy to every
edge in our graph, that denote the likelihood that our hedgehog will pick that edge over
the other edges available to it; this lets us distinguish between things like clean, well-light
main streets and sketchy alleyways.

Under this model, if we still let p(x) denote the probability that from x we make it to
H before reaching B, we have the following system:

• p(H) = 1.

• p(B) = 0.

• For x 6= H,B, we have

p(x) =
∑

y∈(neighbors of x)

p(y) · wxy

wx
,

where wx is the sum of all of the weights of edges leaving x:

wx =
∑

y∈(neighbors of x)

wxy

This is because a hedgehog at any vertex that’s neither home or the black hole will
choose between the neighbors available to it with probabilities weighted by the values
wxy: i.e. the probability that we travel to a neighbor y is just wxy/wx, the weight of
the edge from x to y divided by the sum of the weights of all of the possible edges
leaving x. Therefore, our probability p(x) of making it to home before the black hole
is just the weighted average over all of x’s neighbors of the same event!

To illustrate this idea, we calculate a second example:

Problem. (The Hedgehog’s Walk.) Consider the following second map for a hedgehog’s
walk:
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H

a b

B

c d

2

2

1

2

2

1

1

There are in this world six possible locations: H, the hedgehog’s home, B, a black hole, and
four intermediate locations a, b, c, d, with weighted links between them as labeled. Suppose
that a hedgehog starts off at one of these four locations. How likely are they to make it to
the vertex H before the vertex B?

As noted above, we can turn this into a system of six linear equations in six unknowns:

• p(B) = 0,

• p(a) = 1
2p(H) + 1

2p(b),

• p(c) = 1
4p(H) + 1

4p(a) + 1
2p(d),

• p(H) = 1,

• p(b) = 1
2p(a) + 1

4p(c) + 1
4p(B),

• p(d) = 1
2p(c) + 1

2p(B).

Again, we can just solve these equations by your favorite method of dealing with systems
of linear equations, to get

p(a) =
12

19
, p(b) =

5

19
, p(c) =

8

19
, p(d) =

4

19
.

Excellent! We have a general method for solving a problem. Let’s put that aside for a
second and consider a second problem that might seem unrelated at first:

2 Electrical Networks

We’re going to talk about electrical circuits and networks here for a bit! If you’ve never ran
into the concepts of voltage, current, conductance, or resistance before, that’s OK. For our
purposes, define these concepts as follows:

1. Voltage is just some function v : V (G) → R+ that assigns a positive number v(x) to
each vertex x. In any circuit, we will have some vertex that is grounded; this vertex
has v(ground) = 0. Similarly, we will declare that some source vertex has a potential
difference of 1v from ground assigned to it: this vertex has v(source) = 1.

2. Current is just another function i : E(G)+ → R that assigns a number to each
“oriented edge” (x, y) ∈ E(G)+. We will usually denote the resistance of an edge as
ixy. We ask that ixy = −iyx, which is why we have the current pay attention to the
orientation of edges: we want the flow of current in one direction on an edge to be
−1· the flow of current in the opposite direction.
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3. Resistance is a function E(G) → R+ that assigns a positive number (measured in
ohms, Ω) to each unoriented edge {x, y} ∈ E(G). We usually denote the resistance of
an edge as Rxy.

We ask that these functions preserve the following two properties:

• (Ohm’s law:) The current across an edge {x, y} in the direction (x, y), ixy, satisfies

ixy =
v(x)− v(y)

Rxy
,

where v(x), v(y) are the voltages at x, y and Rxy is the resistance of the edge {x, y}.

• (Kirchoff’s law:) The sum of the currents into and out of any vertex other than the
grounded vertex or the “source” vertex is zero: i.e. for any vertex neither grounded
nor hooked up to power, we have ∑

y∈N(x)

ixy = 0.

For convenience’s sake, we will also define the conductance of an edge {x, y} as the recip-
rocal of its resistance: i.e. Cxy = 1/Rxy, and define the conductance of a vertex x as the
sum of the conductances of the edges leaving it: i.e. Cx =

∑
y∈N(x) Cxy.

With these definitions made, the following problem is a fairly natural one to consider.

Problem. Suppose that we have an electrical circuit: i.e. a graph G with the following
structure:

• The values Rxy have been defined for every edge.

• Some vertex G has been declared to be grounded, while another vertex S has been
declared to be a “source” with a potential difference of 1v from ground.

Can we find v(x) for every vertex in our graph?

We start by considering basically the first graph we studied in this lecture, P4:

1v

S x y G

(ground)
1Ω 1Ω 1Ω

Specifically: we have taken the graph P4 we studied in our first example of random walks,
and turned it into a circuit as follows:

1. We replaced all of P4’s edges with resistors of unit resistance 1.

2. We grounded the vertex G, and created a potential difference of 1v across the vertices
G and S.
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The decorations on the graph above denote this transformation: i.e. attaching a vertex to
denotes that it is the ground vertex, tells us that the vertex on the other side of this

symbol from ground is a source vertex with a potential of some number of volts defined on
it, tells us that an edge is a resistor with the labeled resistance, etc.

In this setup, what happens? Well: we have that v(G) = 0, v(S) = 1, and for any vertex
v not G or S, ∑

y∈N(v)

ivy = 0;

i.e. for vertex x, we have

0 =
∑

y∈N(x)

ix,y = ixS + ixy =
v(x)− v(S)

RxS
+

v(x)− v(y)

Rxy

= v(x)− v(S) + v(x)− v(y),

which implies that v(x) = v(S)+v(y)
2 ; similarly, we can derive that v(y) = v(x)+v(G)

2 . In other
words, to find the voltages at the vertices x, y we’re solving the same equations we did for
our hedgehog’s walk earlier: i.e. v(x) is 2/3, the probability that a hedgehog walking on
our graph starting from x will make it to vertex S before vertex G!

3 Electrons Are Hedgehogs

Surprisingly, this property above – that our random walk and electrical network were, in
some sense, the “same” – holds for all graphs! In the following lemmas, we make this idea
concrete:

Lemma. Suppose that we have a connected graph G with edges weighted by some labeling
wxy. Define a hedgehog’s walk starting at a vertex x in our graph as the following process:

• Initially, the hedgehog starts at x.

• Every minute, if a hedgehog is at some vertex z, it randomly chooses one of the
elements y ∈ N(z) with probability given by the weights on its edges– i.e. each
neighbor has probability wzy/wz of being picked – and goes to that vertex.

Let a, b be a pair of distinguished vertices in our graph, and p(x) be the probability that a
hedgehog starting at the vertex x will make it to vertex b before vertex a.

Then p(x) = v(x), if we turn our graph G into a electrical network with a connected to
ground, a unit of electrical potential sent across a and b, and replace every edge {x, y} of
G with a resistor with conductance wxy.

Proof. This is pretty much identical to what we just did. Specifically: we know from Ohm’s
law that

ixy =
v(x)− v(y)

Rxy
;
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therefore, if we plug Ohm’s law into Kirchoff’s law, we have that whenever x 6= a, b, we
have

∑
y∈N(x)

v(x)− v(y)

Rxy
= v(x) ·

 ∑
y∈N(x)

1

Rxy

− ∑
y∈N(x)

v(y)

Rxy

⇒ v(x) ·

 ∑
y∈N(x)

1

Rxy

 =
∑

y∈N(x)

v(y)

Rxy

⇒ v(x)Cx =
∑

y∈N(x)

Cxyv(y)

⇒ v(x) =
∑

y∈N(x)

Cxy

Cx
v(y).

But what is
Cxy

Cx
? It’s the probability that a hedgehog starting at x chooses to travel to

the vertex y, if we’re picking neighbors of x with probabilities given by the Cxy’s! In this
specific case, where all of our resistances are 1, this is just the chance that a hedgehog at
vertex x will go to y in our random walk.

But this is the exact same equation we’re asking p(x) to satisfy: i.e. we want

p(x) =
∑

y∈N(x)

(chance hedgehog goes from x to y) · p(y) =
∑

y∈N(x)

wxy

wx
· p(y).

The only other restrictions we have on our voltage or random walk is that v(a) = p(a) =
0, v(b) = p(b) = 1: in other words, the equations that we’re asking our voltage function to
satisfy are the same that we’re asking our probability function to satisfy!

We have just shown that p(x) and v(x) are both solutions to the same sets of linear
equations. To conclude that they are equal, then, we just have to show that there is a
unique solution to these equations!

We do this by first making the following two observations:

Observation. Take any system of linear equations of the form obtained from these random
walks on a connected graph1; i.e. a collection of equations of the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = ci. (In this sense, the “boundary” points
are the values that we’re given at the start of our system, while the rest of the points
are the “interior” points whose values are determined by these weighted averages of their
neighbors.)

Then the maximum and minimum values of p(x) must occur on these boundary points.

1Finding a solution to this kind of a system is the process of solving a Dirichlet problem, if you want
a formal name for reference in your reading.
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Proof. This is a fairly easy proof. Suppose instead that x is a point in the interior of our
graph, and that p attains its maximum at x. If we apply this observation to the equation

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

we get

p(x) =
∑

y∈N(x)

wxy

wx
· p(y) ≤

∑
y∈N(x)

wxy

wx
· p(x) = p(x).

The equality of the far-left- and far-right-hand-sides forces the intermediate terms to be
equal: i.e. we must have p(y) = p(x), for every neighbor of x! Repeated applications of this
argument will eventually give us that every vertex connected to x — i.e. every vertex in
our graph, because our graph is connected — is equal to p(x). In particular, this means
that our boundary points have values equal to p(x) as well.

An identical argument will show that having an interior point correspond to a minimum
of p(x) will force all of our vertices to be equal to that minimum as well.

Observation. Again, take any system of linear equations of the form obtained from these
random walks on a connected graph; i.e. a collection of interior equations of the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = ci.
Suppose that p(x), q(x) are a pair of solutions to these equations. Then the mapping

r(x) = p(x) − q(x) is a solution to the same set of interior equations, where we replace all
of the boundary conditions with the conditions r(bi) = 0.

Proof. This is an even easier proof! Simply notice that if

p(x) =
∑

y∈N(x)

wxy

wx
· p(y), q(x) =

∑
y∈N(x)

wxy

wx
· q(y),

we have

r(x) = p(x)− q(x) =
∑

y∈N(x)

wxy

wx
· (p(y)− q(y)) =

∑
y∈N(x)

wxy

wx
· r(y).

Also, if p(bi) = ci, q(bi) = ci, then we have r(bi) = ci − ci = 0.

Given these two observations, we get the following corollary for free:

Corollary. If there is a solution to a system of linear equations of the form obtained from
these random walks on a connected graph, it is unique.

Proof. Suppose we have two solutions p(x), q(x) to such a system of linear equations. By
our second observation, their difference p(x) − q(x) is a solution to a system of linear
equations where all of the boundary values are 0. By our first observation, the maximum
and minimum of this p(x) − q(x) is attained on the boundary. But this means that the
maximum and minimum of p(x)− q(x) is 0: i.e. that p(x) = q(x)!
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So, this tells us that a solution is unique if it exists. To finish our proof, we just need
to simply note that a solution can exist! This is also not too hard, if we use a bit of linear
algebra.

Take a system of linear equations of the form obtained from these random walks on a
connected graph, where the boundary values are 0: i.e. a collection of interior equations of
the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = 0. By plugging in these boundary values into
our interior equations, we can get a collection of n equations in n unknowns p(x1), . . . p(xn)
of the form

p(xi)−
∑

y∈N(xi)

wxiy

wxi

· p(y) = 0.

In the standard fashion, turn these equations into a n×n matrix A by using the coefficients
of these n equations as the entries in A’s rows. Then a solution p(xi) for our set of equations
corresponds precisely to a vector ~p such that A~p = ~0.

On one hand, we know that a solution exists: simply set ~p = 0. On the other hand, we
know that any solution to our system is unique, as proven before! Therefore the only vector
such that A~p = ~0 is the all-zeroes vector: in other words, A is nonsingular! Therefore it has
an inverse, A−1.

Now, suppose that we were considering any boundary conditions p(bi) = ci. This would
correspond to a collection of equations of the form

p(xi)−
∑

y∈N(xi)

wxiy

wxi

· p(y) = di,

for coefficients di given by

di =
∑

boundary components bj

cj ·
wxibj

wxi

(where we assume wxibj = 0 if no edge connects xi to bj .)
Solutions to this system of equations correspond to vectors ~p that are solutions to the

equation A~p = ~d. Because A is invertible, such solutions exist! In particular, they are given
by ~p = A−1~d. This proves that solutions exist and are unique, which was our claim!
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Electrical Networks and Graphs Professor: Padraic Bartlett

Homework 1

Week 2 Mathcamp 2014

1. Prove the following claims about resistors, using Ohm’s law and Kirchoff’s law:

(a) The effective resistance of the circuit below is the reciprocal of the sum of the
reciprocals of the resistors in the circuit. In other words, the circuit

...... R₁R₂Rn
S G

has effective resistance given by the formula

1

Reff
=

n∑
i=1

1

Ri
.

(b) The effective resistance of the circuit below is the sum of the resistors in the
circuit. In other words, R₁ Rn G...S
has effective resistance given by the formula

Reff =
n∑

i=1

Ri.

2. Suppose that we take the 2n vertices of the n-dimensional cube, connect them all with
resistors, ground the origin, and put a 1v potential difference between the origin and
the point (1, 1, . . . 1). What is the resistance of this circuit?
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