
Algebraic GT Instructor: Padraic Bartlett

Lecture 1: Cayley Graphs

Week 5 Mathcamp 2014

Today and tomorrow’s classes are focused nthe interplay of graph theory and algebra.
Specifically, we are going to develop Cayley graphs and Schreier diagrams, use them to
study various kinds of groups, and from there prove some very deep and surprising theorems
from abstract algebra!

In specific: this course kind-of has a natural split into two parts, (a) exploring the
concepts that link groups and graphs, and (b) using those concepts to prove results! This
talk falls into the (a) camp; we’re going to mostly study a large stack of definitions and
examples here.

For the most part, I’m assuming everyone here has seen groups before. However, there
are some specific group concepts that I want people to know for this class: free groups,
generating sets, presented groups, and cosets.

Definition. The free group on n generators a1, . . . an, denoted

〈a1, . . . an〉,

is the following group:

• The elements of the group are all of the strings of the form

ak1i1 a
k2
i2
. . . aklil ,

where the indices i1, . . . il are all valid indices for the a1, . . . an and the k1, . . . kl are
all integers.

• We also throw in an identity element e, which corresponds to the “empty string” that
contains no elements.

• Given two strings s1, s2, we can concatenate these two strings into the word s1s2 by
simply writing the string that consists of the string s1 followed by the string s2.

• Whenever we have ak in a string, we think of this as being

k copies︷ ︸︸ ︷
a · a · . . . a, i.e. k copies of

a. If we have multiple consecutive strings of a’s, we can combine them together into
one such ak: for example, the word a3aa2 is the same thing as the word a6.

• Finally, if we ever have an aa−1 or an a−1a occurring next to each other in a string,
we can simply replace this pairing with the empty string e.

For example, the free group on two generators 〈a, b〉 contains strings like

a6b4a−2b3a1, b12, a−1b−2a4b, . . .
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As described earlier, we concatenate strings by simply placing one after the other: i.e.

a2b−2a3ba3 · a−3b−1a1b3 = a2b−2a3ba3a−3b−1a1b3.

As described above, we typically simplify this right-hand string by canceling out terms and
their inverses, and grouping together common powers of our generators:

a2b−2a3ba3 · a−3b−1a1b3 = a2b−2a3�b��a
3��a−3

�
�b−1a1b3 = a2b−2a4b3

This is a group! In particular, concatenation is associative, the empty string e is clearly an
identity, and we can “invert” any word ak1i1 a

k2
i2
. . . aklil by simply reversing it and switching

the signs on the ki’s: i.e.

�
�ak1i1�

�ak2i2 . . .
�
�aklil ·�

��a−kl
il

. . .
�
��a−k2
i2 �

��a−k1
i1

= e

Definition. Given a group G, we say that it is generated by some collection of elements
a1, . . . an ∈ G if we can create any element in G via some combination of the elements
a1, . . . an and their inverses. Note that some groups have multiple different sets of generators:
i.e. 〈Z,+〉 is generated both by the single element 1 and also by the pair of elements {2, 3}

Definition. In our above discussion, we have primarily defined groups by giving a set and
an operation on that set. There are other ways of defining a group, though! A group
presentation is a collection of n generators a1, . . . an and m words R1, . . . Rm from the free
group 〈a1, . . . an〉, which we write as

〈a1, . . . an | R1, . . . Rm〉.

We associate this presentation with the group defined as follows:

• Start off with the free group 〈a1, . . . an〉.

• Now, declare that within this free group, the words R1, . . . Rm are all equal to the
empty string: i.e. if we have any words that contain some Ri as a substring, we can
simply “delete” this Ri from the word.

You have actually seen some groups defined via a presentation before:

Examples. Consider the group with presentation

〈a | an〉.

This is the collection of all words written with one symbol a, where we regard an = e: i.e.
it’s just

e, a, a2, a3, . . . an−1.

This is because given any string ak ∈ 〈a〉, we have ak = al for any k ≡ l mod n. This is
because we can simply concatenate copies of the strings an, a−n as many times as we want
without changing a string, as an = e!

You have seen this group before: this is just Z/nZ with respect to addition, if you

replace a with 1 and think of

k times︷ ︸︸ ︷
11 . . . 1 as k.
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Often, we will give a group with a presentation in the form

〈a1, . . . an | R1 = R2, R3 = R4, . . . , . . . Rm−1 = Rm〉,

because it is easier sometimes to think of saying that certain kinds of words are equal rather
than other kinds of words are the identity; this is equivalent to the group presentation

〈a1, . . . an | R1(R2)
−1, R3(R4)

−1, . . . , . . . Rm−1(Rm)−1〉.

Definition. Suppose that G is a group, s ∈ G is some element of G, and H is a subgroup
of G. We define the right coset of H corresponding to s as the set

Hs = {hs | h ∈ H}.

We will often omit the “right” part of this definition and simply call these objects cosets.

Examples. Consider the group G = 〈Z,+〉. One subgroup of this group is the collection
of all multiples of 5: i.e.

H = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .}

This subgroup has several cosets:

• s = 0: this forms the coset

H + 0 = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .},

which is just H itself.

• s = 1: this forms the coset

H + 1 = {. . .− 14,−9,−4, 1, 6, 11, 16 . . .}.

• s = 2: this forms the coset

H + 2 = {. . .− 13,−8,−3, 2, 7, 12, 17 . . .}.

• s = 3: this forms the coset

H + 3 = {. . .− 12,−7,−2, 3, 8, 13, 18 . . .}.

• s = 4: this forms the coset

H + 4 = {. . .− 11,−6,−1, 4, 9, 14, 19 . . .}.

Notice that this collection of cosets above is indeed the collection of all of the possible
cosets of H within G: if we take any other element in Z, like say 13, we’ll get one of the
five cosets above: i.e.

H + 13 = {. . .− 2, 3, 8, 13, 18 . . .} = H + 3.

In general, H + x = H + y for any x ≡ y mod 5.
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Examples. Consider the group G = 〈(Z/7Z)×, ·〉, i.e. the nonzero integers mod 7 with
respect to the multiplication operation. This has the set

H = {1, 6}

as a subgroup (check this if you don’t see why!)
This group has the following cosets:

• s = 1, which creates the cosets H · 1 = H,

• s = 2, which creates the coset

H · 2 = {2, 5}.

• s = 3, which creates the coset

H · 3 = {3, 4}.

• s = 4, which creates the coset

H · 4 = {4, 3}.

Notice that this coset is the same as H · 3.

• s = 5, which creates the coset

H · 5 = {5, 2}.

Notice that this coset is the same as H · 2.

• s = 6, which creates the coset

H · 6 = {6, 1}.

Notice that this coset is the same as H.

Examples. Consider the group S3. This group has the subgroup

H = {id, (123), (132)}

as a subgroup. This subgroup has two possible distinct cosets:

• H · id = H · (123) = H · (132) are all the same coset, which is just H.

• H · (12) = H · (13) = H · (23) = {(12), (13), (23)}.

With these definitions set down, we can actually start to do some graph theory:
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1 Cayley Graphs and Groups

Definition. Take any group A along with a generating set S. We define the Cayley graph
GA,S associated to A as the following directed graph:

• Vertices: the vertices of GA are precisely the elements of A.

• Edges: for two vertices x, y, create the oriented edge (x, y) if and only if there is some
generator s ∈ S such that x · s = y. If this happens, we decorate the edge (x, y) with
this generator s, so that we can keep track of how we have formed our connections.

We consider a few examples here:

Examples. The integers Z with the generator 1 have the following very simple Cayley
graph:

=1

This is not hard to see: we have one vertex for every element in our group (i.e. every
integer,) and an edge (x, y) for each pair x, y such that x = y + 1, by definition. Because
this is a Cayley graph, we label each of these edges with the generator that created that
edge: for this graph, because there’s only one generator this is pretty simple (we just label
every edge with a 1.)

Examples. The integers Z with the generating set {2, 3} have the following Cayley graph:

0 2 4 6-2-4

1 3 5-1-3-5

=3=2

Again, our vertices are just the integers. However, this time we have two generators: the
generator 2 connects any two integers that differ by 2, while the generator 3 connects any
two integers that differ by 3. Notice that this graph is not the same as the graph above:
in general, a group can have many markedly different Cayley graphs depending on the
generators that you pick for it.
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Examples. Consider the symmetric group S3 with generators (12), (123). First, we calcu-
late how these generators interact with our group elements when composed together:

group elt. ◦ generator id (12) (13) (23) (123) (132)

(12) (12) id (123) (132) (13) (23)
(123) (123) (23) (12) (13) (132) (123)

We can use this table to create the Cayley graph for this group and generating set:

=(123)

=(12)

id (123)

(12)

(132)

(13)

(23)

Examples. Consider the group given by the presentation

〈a, b | a3 = b2 = (ab)2 = id〉.

Because we do not know all of the elements in this group ahead of time, it is not necessarily
obvious how to create this group’s Cayley graph; unlike in our earlier examples, we cannot
simply write down all of the vertices and then draw edges corresponding to our generators.

Instead, to find the Cayley graph corresponding to this group, we can use the following
procedure:

0. Start by placing one vertex that corresponds to the identity.

1. Take any vertex corresponding to a group element g that we currently have in our
graph. Because our graph is a Cayley graph, it must have one edge leaving that vertex
for each generator in our generating set. Add edges and vertices to our graph so that
this property holds.

2. If some word Ri is a word that is equal to the identity in our group, then in our graph
the path corresponding to that word must be a cycle: this is because if this word is
the identity, then multiplying any element in our group by that word (i.e. taking the
walk on our graph corresponding to that word) should not change that element (i.e.
our walk should not take us somewhere new, and therefore should return to where it
started!)
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Identify vertices only where absolutely necessary to insure that this property holds
at every vertex. (This is the computationally “difficult” part of this algorithm. In
general, finding the Cayley graph, or even more simply determining whether two
arbitrary words in a presented graph are equal, is an undecidable problem: it is
provable that no algorithm exists that will always solve this problem. Look up things
like the halting problem if you want more examples of such things.)

So: if we do this here, we would start by drawing the following graph.

=a

=b

id a

b

We add edge/vertex pairs to both of these added vertices a, b, that correspond to our
generators. Notice that the relation b2 = id tells us that our b-edge leaving b must return
to id, and that none of our other relations apply at this current stage (as they correspond
to walks of length at least 3.)

id a

b ab

ba

=a

=b

a2

Now, we draw new edge from the vertices ab, ba, a2. Notice that the relation a3 = id tells
us that the a-edge leaving a2 returns to the identity, and that the relation b2 = id tells us
that the b edge leaving ab returns to a. Furtheromre, the relation abab = id, along with
the observations that b2 = id ⇒ b = b−1, a3 = id ⇒ a2 = a−1 gives us a number of new
relations:

• abab = id ⇒ bab = a−1 = a2, and therefore the b-edge leaving ba goes to a2. Fur-
thermore, this also tells us that the b-edge leaving a2 goes to ba, because the walk
corresponding to b2 starting from ba must return to ba.
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• abab = id ⇒ aba = b−1 = b, and therefore that the a-edge leaving ab goes to b.
Furthermore, this also tells us that the a-edge leaving ba goes to ab, because the walk
corresponding to a3 starting at ab must return to ab.

This gives us the following graph:

id a

b

a2

ab

ba

=a

=b

At this stage, we have satisfied our second property (that there is an edge leaving each
vertex for each generator,) and we have only identified vertices when absolutely forced to
do so by our relations. From visual inspection, it is clear that we satisfy the three relations
a3 = b2 = abab = id at every vertex; so this is the Cayley graph corresponding to our group!
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