Algebraic GT

Homework 1: Cayley Graphs

Week 5

Mathcamp 2014

- 1. Draw the Cayley graph for the quaternion group $\langle a, b \mid a^2 = b^2 = (ab)^2 \rangle$.
- 2. Show that the dihedral group D_{2n} discussed in class can be expressed via the presentation $\langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$. Find its Cayley graph.
- 3. For any odd n, find a group G with generating set S such that its Cayley graph is an oriented K_n . (An **oriented** K_n is just a copy of the complete graph K_n where we assign a direction to each edge. These graphs are also called **tournaments**.)
- 4. Let Q_n denote the graph corresponding to the *n*-dimensional unit cube. Find a group G with generating set S such that its Cayley graph is the unoriented graph Q_n . (By an **unoriented** graph, we are asking that whenever we have an edge (x, y) in our Cayley graph, we want to also have the reverse edge (y, x).)
- 5. In class, we claimed that any Cayley graph must be vertex-transitive¹. Prove that any Cayley graph is a vertex-transitive graph.
- 6. In class, we claimed that the converse of 5 fails: specifically, that the Petersen graph is vertex-transitive, and that no group/generating set pair can generate the Petersen graph as its Cayley graph. Prove this claim.
- 7. What platonic solids, thought of as undirected graphs, can be realized as Cayley graphs?
- 8. The following facts about cosets of a subgroup H of a group G are true:
 - (a) For any $s \in G$, the right coset Hs is equal to H if and only if $s \in H$.
 - (b) Two cosets Hs, Ht are either completely identical or completely disjoint.
 - (c) If K is a coset and we form the set $Ks = \{k \cdot s \mid k \in K\}$, this set is also a coset.
 - (d) The various possible cosets of H partition G into a collection of disjoint subsets. (In particular, this proves that the number of elements in H must divide the number of elements in G.)
 - (e) If K is a coset of H and k is any element in K, then Hk = K.

Do whatever you need to do to persuade yourself that these facts hold!

Definition. Given two graphs G_1, G_2 with vertex sets V_1, V_2 and edge sets E_1, E_2 , we say that a function $f: V_1 \to V_2$ is an **isomorphism** if the following two properties hold: (1) f is a bijection, and(2) (x, y) is an edge in E_1 if and only if (f(x), f(y)) is an edge in E_2 . An **automorphism** on a graph G is an isomorphism from that graph to itself.

Using this definition, we say that a graph G is **vertex-transitive** if given any two vertices v_1, v_2 of G, there is an automorphism f on G such that $f(v_1) = v_2$. In essence, vertex-transitive graphs have a lot of symmetry: up to the labeling, we cannot distinguish any two vertices.