| The Unit Distance Graph and AC | Instructor: Padraic Bartlett |
| :--- | ---: |
| Lecture 1: Infinite Graphs |  |
| Week 5 |  |

Consider the following model for creating a "random" graph on $n$ vertices:

- Take $n$ vertices, and label them $\{1, \ldots n\}$.
- For each unordered pair of vertices $\{a, b\}$, flip a coin that comes up heads $1 / 2$ of the time and tails otherwise. If it comes up heads, connect these vertices with an edge; otherwise, do not.

This model for "random" graphs has a number of properties. Amongst other things, we can talk about how "likely" it is that a random graph on $n$ vertices possesses a given property, like "there is a triangle" or "there are no edges in the entire graph."

For example, we can easily describe the likelihood of getting a graph on $n$ vertices with no edges: it's just the probability that every time we flipped a coin in our model, it came up tails. There are as many edges in our graph as there are unordered pairs of vertices in our graph: i.e. $\frac{n(n-1)}{2}$, which you can see by thinking of how many ways you have to choose the first vertex $(n)$, then choosing the second vertex $(n-1)$, and then dividing by 2 because we don't care about order. Therefore, the odds of getting such a graph are

$$
\left(\frac{1}{2}\right)^{\frac{n(n-1)}{2}}
$$

which is vanishingly small for large values of $n$.
With this as motivation, consider the following property:
Definition. Let $(\ddagger)$ denote the following graph property: we say that a graph $G$ satisfies the property ( $\ddagger$ ) iff for any pair of finite disjoint subsets $U, W \subset V(G)$, there is some $v \in V(G)$, $v \notin U \cup W$, such that $v$ has an edge to every vertex in $U$ and to no vertices in $W$.

What kinds of graphs satisfy this property? Well, no finite graph does: simply take $U=$ the entire graph and $V=\emptyset$. Then there is no vertex that is not in $U \cup W$, and therefore the above property fails.

But what if we looked at infinite graphs: could we satisfy this property? Relatedly, suppose we studied a "random" graph on $\mathbb{N}$-many vertices: i.e. take $\mathbb{N}$ as your vertex set, for each pair of natural numbers flip a coin, and put an edge between those two elements if and only if your coin comes up heads. How likely is a graph to satisfy this property?

Theorem 1 If $G$ is a random graph on $\mathbb{N}$ that's generated using the model described above, then $G$ satisfies property $(\ddagger)$ with probability 1 (i.e. the probability that $G$ does not satisfy ( $\ddagger$ ) is 0. .)

Proof. Choose any pair of finite disjoint subsets $U, W$ in $V(G)$. Pick any vertex $v \in$ $V(G), v \notin U \cup W$, and let $A_{v}$ be the event that $v$ is connected to all of $U$ and none of $W$. If we let $\operatorname{Pr}\left(A_{v}\right)$ denote the probability that $A_{v}$ occurs, we can easily see that

$$
\operatorname{Pr}\left(A_{v}\right)=\left(\frac{1}{2}\right)^{|U|} \cdot\left(\frac{1}{2}\right)^{|V|} .
$$

The probability that $A_{v}$ doesn't happen plus the probability that $A_{v}$ does happen must sum to 1 (because we clearly have only two possible outcomes: either $A_{v}$ does not happen or $A_{v}$ happens.) Therefore, we then have

$$
\operatorname{Pr}\left(\operatorname{not} A_{v}\right)=1-\left(\frac{1}{2}\right)^{|U|} \cdot\left(\frac{1}{2}\right)^{|V|}<1 \text {. }
$$

Thus, we know that the probability of $k$ different vertices $v_{1}, \ldots v_{k}$ all failing to satisfy $A_{v}$ is just raising this quantity to the $k$-th power. Because the quantity above is $<1$, taking $k$-th powers makes this go to zero as $k$ increases! Therefore, for any $U, W$, we can specifically bound the chances that $A_{v}$ fails for all of the vertices $v_{1}, \ldots v_{k}$ above by above by $\epsilon$, for any $\epsilon>0$, by simply looking at enough of these vertices $v_{1}, \ldots v_{k}$.

Now, notice that there are only countably many pairs of finite disjoint subsets of $\mathbb{N}$. To see why, first notice that for any $k$, the set of subsets of $\mathbb{N}$ of size $k$ is a countable set: you can prove this using the same method as we did in proof techniques to show that there are countably many subsets of $\mathbb{N}^{2}$, i.e. by plotting them all as points in $\mathbb{N}^{k}$, drawing a spiral that starts at the origin and goes through each point, and sending the $m$-th natural number to the $m$-th point we hit on our spiral. To extend this to our claim, all we have to do is show that the union of countably many countable sets is countable: to do this, think of each of our countable sets as a copy of $\mathbb{N}$, which we can do because there's a bijection between each countable set and $\mathbb{N}$. Therefore, we can interpret the disjoint union of these countable sets as just $\mathbb{N}^{2}$, where the first coordinate tells us which countable set we're in and the second coordinate is telling us which element we have in our countable set. $\mathbb{N}^{2}$ is countable, by the spiral argument we gave above; therefore, the entire collection of these finite subsets is countable! (And therefore pairs of them are also countable, via the same logic.)

Consequently, we can enumerate all such pairs in a list $\left\{\left(U_{i}, W_{i}\right)\right\}_{i=1}^{\infty}$. For each one of these pairs, we proved earlier that we can bound the probability that there is no vertex that hits all of $U_{i}$ and none of $V_{i}$ above by any arbitrarily small number that we want. So: pick any $\epsilon>0$, and bound the probability that $\left(U_{i}, W_{i}\right)$ does not have a vertex that hits all of $U_{i}$ and none of $W_{i}$ by $\epsilon / 2^{i}$, for every $i$. Then, the probability of any one of these events failing is bounded above by the sum

$$
\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\right)=\epsilon .
$$

Therefore, the probability that none of these events fails is bounded below by $1-\epsilon$ ! If none of these events fail, then our graph satisfies $(\ddagger)$ : therefore, we've just shown that almost every random graph satisfies property ( $\ddagger$ ).

In the light of the above comments, it's interesting to note that we can actually construct a graph that satisfies $(\ddagger)$ ! In fact, consider the following construction:


- Start by defining $R_{0}=K_{1}$, the graph with a single vertex.
- If $R_{k}$ is defined, let $R_{k+1}$ be defined by the following: take $R_{k}$, and add a new vertex $v_{U}$ for every possible subset $U$ of $R_{k}$ 's vertices. Add an edge from $v_{U}$ to every element in $U$, and to no other vertices in $R_{k}$.
- Let $R=\cup_{k=1}^{\infty} R_{k}$.

We claim that $R$ is a graph on $\aleph_{0}$-many vertices that satisfies property ( $\ddagger$ ). To see why: pick any two finite disjoint subsets $U, V$ of $V(R)$. Because each vertex of $R$ lives in some $R_{k}$, we know that there is some finite value $n$ such that $U, V$ are both subsets of $R_{n}$, as there are only finitely many elements in $U \cup V$. Then, by construction, we know that there is a vertex $v_{U}$ in $R_{n+1}$ with an edge to every vertex in $U$ and to none in $V$.

This graph is known as the Rado graph, and it has the following remarkable property:
Proposition 2 The Rado graph is the only graph on $\aleph_{0}$-many vertices, up to isomorphism $\prod^{1}$, that satisfies ( $\ddagger$ ).

Proof. To see this, take any two graphs $G=\left(V, E_{G}\right), H=\left(W, E_{H}\right)$ on $\aleph_{0}$-many vertices that satisfy ( $\ddagger$ ). We will create an isomorphism $\phi$ " $V \rightarrow W$ between these two graphs..

To do this: fix some ordering $\left\{v_{i}\right\}_{i=1}^{\infty}$ of $V$ 's vertices. Similarly, order $W$ 's vertices as $\left\{w_{i}\right\}_{i=1}^{\infty}$. We start with our isomorphism $\phi: V \rightarrow W$ undefined for any values of $V$, and construct $\phi$ via the following back-and-forth process:

- At odd steps:
- Let $v$ be the first vertex under $V$ 's ordering that we haven't defined $\phi$ on.
- Let $U$ be the collection of all of $v$ 's neighbors in $V$ that we currently have defined $\phi$ on.
- By $(\ddagger)$, we know that there is a $w \in W$ such that $w$ is adjacent to all of the vertices in $\phi(U)$, and is also not adjacent to any other vertices that we have mapped to with $\phi$. (We can apply ( $\ddagger$ ) because both of these sets are finite.)
$-\operatorname{Set} \phi(v)=w$.

[^0]- At even steps: do the exact same thing as above, except switch $V$ and $W$ ! I.e.
- Let $w$ be the first vertex under $W$ 's ordering that we haven't yet mapped to with $\phi$.
- Let $U$ be the collection of all of $w$ 's neighbors in $W$ that we currently have mapped to with $\phi$.
- By $(\ddagger)$, we know that there is a $v \in V$ such that $v$ is adjacent to the set $\phi^{-1}(U)$ made of the vertices in $V$ that map to $U$, and $v$ is not adjacent to any other vertices that we have defined $\phi$ on. (Again, we can apply ( $\ddagger$ ) because both of these sets are finite.)
$-\operatorname{Set} \phi(v)=w$.
So, in other words, we're starting with $\phi$ totally undefined; at our first step, we're then just taking $\phi$ and saying that it maps $v_{1} \in V$ to some element in $V^{\prime}$. Then, at our second step, we're taking the smallest element in $V^{\prime}$ that's not $\phi\left(v_{1}\right)$, and mapping it to some element $w$ that either does or does not share an edge with $v$, depending on whether $\phi(w)$ and $\phi(v)$ share an edge.

By repeating this process, we eventually get a map that's defined on all of $V, V^{\prime}$; we claim that such a map is an isomorphism. It's clearly a bijection, as it hits every vertex exactly once by definition. Therefore, it suffices to prove that it preserves edges: i.e. that $\{u, v\}$ is an edge in $E_{G}$ if and only if $\{\phi(u), \phi(v)\}$ is an edge in $E_{H}$.

To see why this is true, take any pair of vertices $u, v$ in $V$. Assume without any loss of generality that $\phi$ was defined on $u$ before it defined on $v$ (one of them has to be defined first, so it might as well be $u$.) Then, when we defined $\phi(v)$, there were only two ways we went about doing it:

- We defined $\phi(v)$ at an odd stage. In this case, when we defined $\phi(v)$, we defined $\phi(v)$ so that it would only be adjacent to the image under $\phi$ of all of $v$ 's neighbors that have already been defined! In particular, this means that we defined $\phi(v)$ to be adjacent to $\phi(u)$ if and only if $\{u, v\}$ was an edge in $E_{G}$.
- We defined $\phi(v)$ at an even stage. In this case, we picked $v$ so that it would only be adjacent to every element in
$\phi^{-1}$ (elements currently mapped to by $\phi$ that are neighbors of $\left.\phi(v)\right)$.
But this means that $v$ is adjacent to $\phi^{-1}(\phi(u))=u$ if and only if $\{\phi(u), \phi(v)\}$ is an edge in $W$ ! So, because $\{u, v\}$ is an edge, so is $\{\phi(u), \phi(v)\}$.

Therefore, we have that $\phi$ is an isomorphism.
Finally, combining our results gives us the following rather surprising result:
Corollary 3 With probability 1, any two random graphs on $\mathbb{N}$ are isomorphic, and furthermore isomorphic to the Rado graph. In other words, up to labeling, any random graph on $\mathbb{N}$ is the Rado graph.
(... wait, what?)


[^0]:    ${ }^{1}$ An isomorphism of two graphs $G=\left(V, E_{G}\right), H=\left(W, E_{H}\right)$ is a bijection $\phi: V \rightarrow W$ such that $\{u, v\}$ is an edge in $E_{G}$ if and only if $\{\phi(u), \phi(v)\}$ is an edge in $E_{H}$.

