
The Unit Distance Graph and AC Instructor: Padraic Bartlett

Lecture 1: Infinite Graphs

Week 5 Mathcamp 2012

Consider the following model for creating a “random” graph on n vertices:

• Take n vertices, and label them {1, . . . n}.

• For each unordered pair of vertices {a, b}, flip a coin that comes up heads 1/2 of the
time and tails otherwise. If it comes up heads, connect these vertices with an edge;
otherwise, do not.

This model for “random” graphs has a number of properties. Amongst other things,
we can talk about how “likely” it is that a random graph on n vertices possesses a given
property, like “there is a triangle” or “there are no edges in the entire graph.”

For example, we can easily describe the likelihood of getting a graph on n vertices with
no edges: it’s just the probability that every time we flipped a coin in our model, it came
up tails. There are as many edges in our graph as there are unordered pairs of vertices in
our graph: i.e. n(n−1)

2 , which you can see by thinking of how many ways you have to choose
the first vertex (n), then choosing the second vertex (n−1), and then dividing by 2 because
we don’t care about order. Therefore, the odds of getting such a graph are(

1

2

)n(n−1)
2

,

which is vanishingly small for large values of n.
With this as motivation, consider the following property:

Definition. Let (‡) denote the following graph property: we say that a graph G satisfies the
property (‡) iff for any pair of finite disjoint subsets U,W ⊂ V (G), there is some v ∈ V (G),
v /∈ U ∪W , such that v has an edge to every vertex in U and to no vertices in W .

What kinds of graphs satisfy this property? Well, no finite graph does: simply take
U =the entire graph and V = ∅. Then there is no vertex that is not in U ∪W , and therefore
the above property fails.

But what if we looked at infinite graphs: could we satisfy this property? Relatedly,
suppose we studied a “random” graph on N-many vertices: i.e. take N as your vertex set,
for each pair of natural numbers flip a coin, and put an edge between those two elements if
and only if your coin comes up heads. How likely is a graph to satisfy this property?

Theorem 1 If G is a random graph on N that’s generated using the model described above,
then G satisfies property (‡) with probability 1 (i.e. the probability that G does not satisfy
(‡) is 0.)
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Proof. Choose any pair of finite disjoint subsets U,W in V (G). Pick any vertex v ∈
V (G), v /∈ U ∪ W , and let Av be the event that v is connected to all of U and none of
W . If we let Pr(Av) denote the probability that Av occurs, we can easily see that

Pr(Av) =

(
1

2

)|U |
·
(

1

2

)|V |
.

The probability that Av doesn’t happen plus the probability that Av does happen must
sum to 1 (because we clearly have only two possible outcomes: either Av does not happen
or Av happens.) Therefore, we then have

Pr(not Av) = 1−
(

1

2

)|U |
·
(

1

2

)|V |
< 1.

Thus, we know that the probability of k different vertices v1, . . . vk all failing to satisfy
Av is just raising this quantity to the k-th power. Because the quantity above is < 1,
taking k-th powers makes this go to zero as k increases! Therefore, for any U,W , we can
specifically bound the chances that Av fails for all of the vertices v1, . . . vk above by above
by ε, for any ε > 0, by simply looking at enough of these vertices v1, . . . vk.

Now, notice that there are only countably many pairs of finite disjoint subsets of N. To
see why, first notice that for any k, the set of subsets of N of size k is a countable set: you
can prove this using the same method as we did in proof techniques to show that there are
countably many subsets of N2, i.e. by plotting them all as points in Nk, drawing a spiral
that starts at the origin and goes through each point, and sending the m-th natural number
to the m-th point we hit on our spiral. To extend this to our claim, all we have to do is show
that the union of countably many countable sets is countable: to do this, think of each of
our countable sets as a copy of N, which we can do because there’s a bijection between each
countable set and N. Therefore, we can interpret the disjoint union of these countable sets
as just N2, where the first coordinate tells us which countable set we’re in and the second
coordinate is telling us which element we have in our countable set. N2 is countable, by
the spiral argument we gave above; therefore, the entire collection of these finite subsets is
countable! (And therefore pairs of them are also countable, via the same logic.)

Consequently, we can enumerate all such pairs in a list {(Ui,Wi)}∞i=1. For each one of
these pairs, we proved earlier that we can bound the probability that there is no vertex that
hits all of Ui and none of Vi above by any arbitrarily small number that we want. So: pick
any ε > 0, and bound the probability that (Ui,Wi) does not have a vertex that hits all of
Ui and none of Wi by ε/2i, for every i. Then, the probability of any one of these events
failing is bounded above by the sum

∞∑
n=1

ε

2n
= ε

( ∞∑
n=1

1

2n

)
= ε.

Therefore, the probability that none of these events fails is bounded below by 1− ε! If none
of these events fail, then our graph satisfies (‡): therefore, we’ve just shown that almost
every random graph satisfies property (‡).

In the light of the above comments, it’s interesting to note that we can actually construct
a graph that satisfies (‡)! In fact, consider the following construction:
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• Start by defining R0 = K1, the graph with a single vertex.

• If Rk is defined, let Rk+1 be defined by the following: take Rk, and add a new vertex
vU for every possible subset U of Rk’s vertices. Add an edge from vU to every element
in U , and to no other vertices in Rk.

• Let R = ∪∞k=1Rk.

We claim that R is a graph on ℵ0-many vertices that satisfies property (‡). To see why:
pick any two finite disjoint subsets U, V of V (R). Because each vertex of R lives in some
Rk, we know that there is some finite value n such that U, V are both subsets of Rn, as
there are only finitely many elements in U ∪ V . Then, by construction, we know that there
is a vertex vU in Rn+1 with an edge to every vertex in U and to none in V .

This graph is known as the Rado graph, and it has the following remarkable property:

Proposition 2 The Rado graph is the only graph on ℵ0-many vertices, up to isomorphism1,
that satisfies (‡).

Proof. To see this, take any two graphs G = (V,EG), H = (W,EH) on ℵ0-many vertices
that satisfy (‡). We will create an isomorphism φ”V →W between these two graphs..

To do this: fix some ordering {vi}∞i=1 of V ’s vertices. Similarly, order W ’s vertices as
{wi}∞i=1. We start with our isomorphism φ : V → W undefined for any values of V , and
construct φ via the following back-and-forth process:

• At odd steps:

– Let v be the first vertex under V ’s ordering that we haven’t defined φ on.

– Let U be the collection of all of v’s neighbors in V that we currently have defined
φ on.

– By (‡), we know that there is a w ∈ W such that w is adjacent to all of the
vertices in φ(U), and is also not adjacent to any other vertices that we have
mapped to with φ. (We can apply (‡) because both of these sets are finite.)

– Set φ(v) = w.

1An isomorphism of two graphs G = (V,EG), H = (W,EH) is a bijection φ : V → W such that {u, v} is
an edge in EG if and only if {φ(u), φ(v)} is an edge in EH .
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• At even steps: do the exact same thing as above, except switch V and W ! I.e.

– Let w be the first vertex under W ’s ordering that we haven’t yet mapped to with
φ.

– Let U be the collection of all of w’s neighbors in W that we currently have
mapped to with φ.

– By (‡), we know that there is a v ∈ V such that v is adjacent to the set φ−1(U)
made of the vertices in V that map to U , and v is not adjacent to any other
vertices that we have defined φ on. (Again, we can apply (‡) because both of
these sets are finite.)

– Set φ(v) = w.

So, in other words, we’re starting with φ totally undefined; at our first step, we’re then
just taking φ and saying that it maps v1 ∈ V to some element in V ′. Then, at our second
step, we’re taking the smallest element in V ′ that’s not φ(v1), and mapping it to some
element w that either does or does not share an edge with v, depending on whether φ(w)
and φ(v) share an edge.

By repeating this process, we eventually get a map that’s defined on all of V, V ′; we
claim that such a map is an isomorphism. It’s clearly a bijection, as it hits every vertex
exactly once by definition. Therefore, it suffices to prove that it preserves edges: i.e. that
{u, v} is an edge in EG if and only if {φ(u), φ(v)} is an edge in EH .

To see why this is true, take any pair of vertices u, v in V . Assume without any loss
of generality that φ was defined on u before it defined on v (one of them has to be defined
first, so it might as well be u.) Then, when we defined φ(v), there were only two ways we
went about doing it:

• We defined φ(v) at an odd stage. In this case, when we defined φ(v), we defined φ(v)
so that it would only be adjacent to the image under φ of all of v’s neighbors that have
already been defined! In particular, this means that we defined φ(v) to be adjacent
to φ(u) if and only if {u, v} was an edge in EG.

• We defined φ(v) at an even stage. In this case, we picked v so that it would only be
adjacent to every element in

φ−1(elements currently mapped to by φ that are neighbors of φ(v)).

But this means that v is adjacent to φ−1(φ(u)) = u if and only if {φ(u), φ(v)} is an
edge in W ! So, because {u, v} is an edge, so is {φ(u), φ(v)}.

Therefore, we have that φ is an isomorphism.

Finally, combining our results gives us the following rather surprising result:

Corollary 3 With probability 1, any two random graphs on N are isomorphic, and further-
more isomorphic to the Rado graph. In other words, up to labeling, any random graph on
N is the Rado graph.

(... wait, what?)
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