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Lecture 3: The Concept of Quasirandomness

Week 4 Mathcamp 2012

1 Defining Quasirandomness

Something odd you may have noticed in yesterday’s lecture is the following: when we were
proving that the eigenvalues λ1, . . . λn of a random graph’s adjacency matrix were of the
form λ1 ∼= n

2 , λ2, . . . λn = o(n), we really never actually directly worked with a random
adjacency matrix! Instead, the only two facts we used were these two:

• The total number of expected 4-cycles in a random graph is roughly ≤ n4

16 .

• The expected degree of every vertex in a random graph is roughy ≥ n
2 .

By using these two observations, we were able to get an upper bound on the sum of the
fourth powers of the eigenvalues and a lower bound on λ1, respectively; combining these
two inequalities gave us our claimed result.

This observation, that knowing that a graph satisfied two kinds of “randomness” prop-
erties forced it to have certain other kinds of randomness properties, is the motivation for
the following definition, and indeed this entire class!

Definition. Let G = {Gkn}∞n=1 be any sequence of graphs, each on kn vertices, where the
kn’s are an nondecreasing sequence that tends to infinity. We say that this sequence is
quasirandom if, roughly speaking, it “looks like a random graph” in a number of quan-
tifiable ways.

To make this rigorous, here’s an additional bit of notation. Suppose that G, H are two
graphs. Let N∗G(H) denote the number of labelled occurences of H as an induced subgraph
of G. Similarly, let NG(H) denote the number of labeled occurences of H as a subgraph of
G (not necessarily induced.)

We say that our sequence G is quasirandom if and only if its elements satisfy the following
list of asymptotic properties, as the number of vertices in any such elementG goes to infinity:

P1(s): For any graph Hs on s vertices,

N∗G(Hs) = (1 + o(1)) · ns · 2−(s2).

P2(t): Let Ct denote the cycle of length t. Then

e(G) ≥ (1 + o(1)) · n
2

4
, and

NG(Ct) ≤ (1 + o(1)) · n
t

2t
.
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P3: Let A(G) denote the adjacency matrix of G, and |λ1| ≥ . . . ≥ |λn| be the eigenvalues
of A(G). Then

e(G) ≥ (1 + o(1)) · n
2

4
, and

λ1 = (1 + o(1)) · n
2
, λ2 = o(n).

P4: Given any subset S ⊆ V ,

e(S) =
|S|2

4
+ o(n2).

P5: Given any pair of vertices v, v′ ∈ G, let s(v, v′) denote the number of vertices y such
that both (v, y) and (v′, y) are either both edges or both nonedges in G. Then∑

v,v′

∣∣∣s(v, v′)− n

2

∣∣∣ = o(n3).

In addition, a useful property to note is the “P0” property:

P0: ∑
v∈V

∣∣∣deg(v)− n

2

∣∣∣ = o(n2).

Another way to phrase P0 is as the following claim:

P0’: All but o(n) vertices in G have degree (1 + o(1))n2 .

(HW problem for this class: prove that these are equivalent, if you don’t believe this!) The
P0 property is strictly weaker than any of the above properties: another HW problem is to
show that P0 is implied by any of the 5 above properties.

In the definition above, we said that a graph has to satisfy all of the properties above
in order to be quasirandom. However, as we saw yesterday, some of these properties are
related: specifically, we saw yesterday that P2(4) and P0 — i.e. knowing the number of
4-cycles and the degrees — was enough to show that P3 holds.

As it turns out, this equivalence property holds for all of the properties above! In other
words, we have the following theorem:

Theorem. Suppose that G is a sequence of graphs that satisfies any one of

• P1(s), for some s ≥ 4, or

• P2(t), for some t ≥ 4, or

• P3, or P4, or P5.

Then it satisfies all of these properties. In other words, all of these properties are equivalent!

This is fairly surprising: at first glance, it doesn’t seem like having the right number of
4-cycles should be enough to force you to have the right number of any induced subgraph
(like, say, the right number of copies of the Petersen graph!) And yet, this turns out to be
true. Today and tomorrow’s lectures will be devoted to proving this resut.
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2 The Massive Equivalence Proof, 1/2

A map of our proof is the following:

P1(s+ 1) ⇒ P2(s+ 1)
⇓ ⇓

P1(s) ⇒ P2(s)
⇓ ⇓
...

...
P1(4) ⇒ P2(4) ⇒ P3 ⇒ P4 ⇒ P5 ⇒ P1(t), for all t.

A part of our proof that we’ll be using but not proving in class is that P0 is implied by all
of our properties: showing this is part of the HW over the next two days, and you should
do it if you feel like the following proofs will feel pointless without it.

We start here. Throughout these proofs, assume that G is a n-vertex graph that comes
from a sequence G, that we’re trying to show is quasirandom.

Proposition. P1(s+ 1)⇒ P1(s).

Proof. Take any graph M(s) on s vertices, and make the following two observations:

1. There are 2s-many ways (counting different labelings as distinct) to extend any such
M(s) to a labeled graph on s+ 1 vertices. To see this, consider the process of adding
a n + 1-th vertex v to M(s): for every vertex w in M(s), we’ll have decide whether
(v, w) is or is not an edge, which accounts for our 2s many choices.

2. As well, if you take any copy of M(s) in G, there are precisely n−s induced subgraphs
on s + 1 vertices of G that contain that M(s) as a subgraph (as any such graph is
formed by simply choosing another vertex of G.

By combining these observations, we can derive the following relation between N∗G(M(s+1))
and N∗G(M(s)).

N∗G(M(s)) · (n− s)
2s

= N∗G(M(s+ 1)).

Therefore, if P1(s+ 1) holds, we can use the property that

N∗G(M(s+ 1)) = (1 + o(1)) · ns+1 · 2−(s+1
2 )

to deduce that

N∗G(M(s)) · (n− s)
2s

= (1 + o(1)) · ns+1 · 2−(s+1
2 )

⇒ N∗G(M(s)) = (1 + o(1)) · ns · 2−(s2).

This is precisely P1(s).
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On the HW, you’re asked to prove the following:

Proposition. P1(3)⇒ P0.

Combining these two results tells us that P1(s)⇒ P0, for any s ≥ 3: i.e. that if we have the
right number of all induced subgraphs on s vertices, we also have all of our vertices with
about the right degree. Which seems reasonable.

Using this, we can move on to our next result:

Proposition. P1(t)⇒ P2(t), for t ≥ 3.

Proof. First, notice that because P1(t)⇒ P1(t− 1)⇒ . . .⇒ P1(3)⇒ P0, we immediately
have the edge condition

e(G) ≥ (1 + o(1)) · n
2

4

for P2. So it suffices to verify that we also have the “right number” of t-cycles.

Take any cycle Ct with labeled vertices. There are precisely 2(t
2)−t-many ways to extend

this cycle to a subgraph where we’ve determined whether every edge either exists or does

not exist: i.e. there are 2(t
2)−t-many different labeled graphs whose existence as labeled

induced subgraphs could correspond to this specific cycle.
Therefore, we have that

NG(Ct) =
∑
H

N∗G(H) = 2(t
2)−t · (1 + o(1)) · nt · 2−(t

2) = (1 + o(1)) · n
t

2t
.

This is precisely P2(t).

Proposition. P2(2k)⇒ P3.

Proof. For 2k = 4, this is exactly what we did yesterday when we were studying the
eigenvalues of a random graph: instead of directly calculating them, we instead found them
by using the number of 4-cycles!

It bears noting that the proof for 2k-cycles is pretty much identical: instead of looking
at A4, you look at A2k, and you will wind up with the same inequalities after taking 2k-th
roots. Persuade yourself of this fact if you’re skeptical!

Proposition. P3 ⇒ P4.

Proof. Let A(G) be the associated adjacency matrix to the graph G, |λ1| ≥ . . . ≥ |λn|
be its eigenvalues, and e1, . . . en the corresponding eigenvectors (via the spectral theorem,
pick these so that they’re all orthogonal to each other and also all of length 1.) As well, let

u =
(

1√
n
, . . . 1√

n

)
.

We claim first that the corresponding eigenvector e1 of to λ1 A is “roughly” u: i.e. that
||u− e1|| is o(1). To see this, simply write u =

∑n
j=1 ajej : we can do this because the ej ’s

form a basis for Rn! (yay spectral theorem!)
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Then, on one hand, we have that

Au = A ·

 n∑
j=1

ajej

 =

n∑
j=1

ajλjej .

On the other, we also have that Au = 1√
n

(degi(v1), . . .degi(vn)). Because P3 ⇒ P0, we

know that all but o(n) of these vertices have degree (1 + o(1))n2 ; therefore, we know that
we can write

Au =
(

(1 + o(1))
n

2

)
· u + w,

for some vector w with all but o(n) of its components with magnitude o(
√
n). This forces

||w|| = o(n). Now, if we think about what this means for the eigenvalues of A, we can use
P3 to show that

n∑
j=1

ajλjej =
(

(1 + o(1))
n

2

)
· u + w

⇒
n∑

j=1

aj

(
λj −

n

2

)
ej = o(1) · n

2
· u + w

⇒

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

aj

(
λj −

n

2

)
ej

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣o(1) · n
2
· u + w

∣∣∣∣∣∣ = o(n)

⇒

 n∑
j=1

a2j

(
λj −

n

2

)21/2

= o(n)

⇒

 n∑
j=2

a2j

(n
2

)21/2

= o(n)

⇒
n∑

j=2

a2j = o(1).

Therefore, we have that u = a1e1 + v, for some vector v with ||v|| = o(1). This tells us
that |a1| = 1 + o(1).

Now, we need to use a very very large hammer from linear algebra, called the Perron-
Frobenius theorem, to note the following: because e1 is the eigenvector corresponding to
the largest eigenvalue of a nonnegative symmetric matrix A, the Perron-Frobenius theorem
says that all of the entries in the vector e1 are nonnegative. Accept this on faith, because
the Perron-Frobenius theorem could easily be a 3-4 chili class in its own right!

If we use this on faith, we have just shown that a1 = 1 + o(1). This proves our claim
that ||u− e1|| is o(1).

Let us use this fact in proving our current proposition. Given any subset S ⊆ V , set
χS to be the characteristic vector of S: i.e. χS has a 1 in its j-th slot if vj ∈ S, and
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a 0 otherwise. As well, define s = χS − 〈χS , e1〉e1: i.e. s is the result of taking χ1 and
subtracting off its e1-component.

With these definitions made, let us examine the quantity 〈As, s〉 in two different ways.
On one hand, if we use our claim from earlier, we have

〈As, s〉 = 〈A(χS − 〈χS , e1〉e1), χS − 〈χS , e1〉e1〉
= 〈Aχs, χs〉 − 〈Aχs, 〈χs, e1〉e1〉 − 〈A〈χs, e1〉e1, χs〉+ 〈A〈χs, e1〉e1, 〈χs, e1〉e1〉
= 〈Aχs, χs〉 − λ1〈χs, e1〉2

= 2e(S)− λ1〈χs, e1〉2

= 2e(S)− λ1〈χs,u + v〉2

= 2e(S)− λ1
(
|S|√
n

+ o(
√
|S|
)2

= 2e(S)−
(

1

2
+ o(1)

)
|S|2 + o(n2).

On the other, if we use the observation that s is orthogonal (by construction) to e1, we
can see that

〈As, s〉 ≤ |λ2| · ||s||2 = |λ2| · ||χs − 〈χS , e1〉e1||2 ≤ ||χS || = |λ2| · |S| = o(n) · |S|.

Combining these two observations tells us that

2e(S)−
(

1

2
+ o(1)

)
|S|2 + o(n2) ≤ o(n) · |S|

⇒e(S) = (1 + o(1))
|S|2

4
.

This is precisely P4.
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