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Yesterday, we introduced the idea of a probability space. Throughout this course, we will
almost always study the space Gn,1/2:

• The set for Gn,1/2 is the collection of all graphs on n vertices.

• The probability measure for Gn,1/2 is the measure that says that all graphs are equally

likely: i.e. for any H ∈ Gn,1/2, P(H) = 1

2(
n
2)

.

This model corresponds to the following process for generating a random graph:

• Take n labeled vertices {1, . . . n}.

• For each unordered pair of vertices {a, b}, flip a fair coin. If it comes up heads, connect
these vertices with an edge; otherwise, do not.

To see why, simply consider the probability of generating any given labeled graph in the
model above; because it involves making

(
n
2

)
choices on whether an edge exists or not, the

probability of this graph occurring is
(
1
2

)(n2), i.e. the same probability that we gave above
in our probability space.

Given this model, a natural sequence of questions to ask is “what properties is a random
graph likely to have?” For example, consider counting the number of edges in a random
graph, or triangle subgraphs, or connectivity, or other such properties: what should we
expect these values to be?

We study these properties in this lecture:

1 Properties of the Random Graph

As a warmup, we start with the following question:

Question 1 Let e(H) denote the function that takes in a graph H and outputs the total
number of edges in H. What is the expected value of e over Gn,1/2? In other words, if you
take a random graph on n vertices under our model, how many edges would you expect to
see on average?

Answer. We calculate the expected value of this function e, using the definition we came
up with on yesterday:

E(e) =
∑

H∈Gn,1/2

e(H) · P(H) =
∑

H∈Gn,1/2

e(H) · 1

2(n2)
=

(
2(n2) ·

(
n
2

)
2

)
· 1

2(n2)
=

(
n
2

)
2
.
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Alternately, if you think of the model we have for our random graph, this is pretty clear:
if you have n vertices and you’re flipping a coin for each pair of them, you’d expect to see
(n2)
2 many heads, i.e.

(n2)
2 many edges.

In general, we will switch between using either of these arguments, depending on which
is easier for us to use and calculate.

More interestingly, we can ask how likely our random graph is to contain a given struc-
ture. For example, instead of just asking how many edges our graph has, we could ask how
many distinct labeled triangles occur as subgraphs of our graph:

Question 2 Let t(H) denote the function that takes in a graph H and outputs the total
number of distinct labellings of triangles in H. What is the expected value of t over Gn,1/2?
In other words, if you take a random graph on n vertices under our model, how many
triangles would you expect to see on average?

Answer. Let’s use the second description of our random graph model, where we think of
it as a process: i.e. where we construct a random graph by picking n vertices and flip a coin
for each pair. Under this model, the total number of triangles we would expect to see is∑

a,b,c distinct labeled vertices

P(abc is a triangle)

=
∑

a,b,c distinct labeled vertices

P(ab is an edge) · P(bc is an edge) · P(ac is an edge)

=
∑

a,b,c distinct labeled vertices

1

8

=n · (n− 1) · (n− 2) · 1

8
,

because there are n(n− 1)(n− 2) many ways to choose three vertices along with a labeling,
and the probability that that individual triple of edges forms a triangle is 1

8 .

For n = 3, this formula predicts that we’ll see 3!
0! ·

1
8 = 3

4 triangles on average. However, if
we look at the collection of all graphs on three vertices, we see that there are eight possible
graphs, only one of which is a triangle; so we’d expect the probability here to be 1

8 . Why is
there this incongruity between our answers?

Well, because in our problem we’re counting the number of distinct labellings of
triangles, not just triangles! To be precise, we are counting all of the ways of mapping the
three numbers 1, 2, 3 onto a set of three vertices in a random graph, so that the resulting
image under this mapping is a triangle. Therefore, whenever there is a triangle in our
random graph, we actually wind up counting it six times:

1

2 3

1

3 2

2

1 3

2

3 1

3

1 2

3

2 1
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This accounts for the discrepancy between our two counts: while we might have expected
1
8 , we will really get 6

8 if we want to count distinct labeled occurrences of our triangle.
If we want to ignore this question of distinct labellings, and just count the number of

different triangles, we can just divide our formula by the number of symmetries of a triangle,
because this is the same thing as the number of ways of labeling a triangle and having it
remain a triangle. In other words, a formula for counting distinct triangles without caring
about labellings is

n · (n− 1) · (n− 2) · 1

6
· 1

8
.

For n = 4, this predicts that your typical graph will contain about half a triangle. If
you enumerate all of the 64 graphs on 4 vertices and count, you can see that there are 32
triangles, and therefore that this prediction aligns with reality there.

We can generalize the proof method above dramatically, from triangles to any given
subgraph:

Question 3 Take any labeled graph L on s vertices. Let l(H) denote the function that takes
in a graph H and outputs the total number of distinct labeled induced subgraphs isomorphic
to L in H. What is the expected value of l over Gn,1/2? Again, in other words,if you take
a random graph on n vertices, how many copies of L would you expect to find in it?

Answer. Again, let’s use the “pick n vertices and flip a coin for each pair” model. Under
this model, we have ∑

ways to pick s distinct labeled vertices

P(these labeled s vertices form a copy of L)

=
∑

ways to pick s distinct labeled vertices

1

2(s2)

=
n · (n− 1) · . . . (n− s+ 1)

2(s2)
,

because there are n · (n− 1) · . . . (n− s+ 1) many ways to pick out s vertices and label them
from a set of n vertices, and the probability that these vertices in this order correspond to
a copy of L as written is 1

2(
s
2)

.

Again, this process counts labeled occurrences of L, as opposed to occurrences of L. If
you want to just count the occurrences of L, you want the formula

n · (n− 1) · . . . (n− s+ 1)

2(s2)
· 1

Aut(L)
.

Here, Aut(L) is the number of “symmetries” possessed by the graph L. More specifically,
it is the group of automorphisms of L, where a graph automorphism is the total
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number of ways of permuting the vertices of a graph without changing the graph itself: i.e.
after an automorphism, two vertices i, j should have an edge between them if and only if
they had an edge between them before the automorphism. For example, the total number
of automorphisms of a triangle is 6; no matter how you permute the three vertices of a
triangle, you get a triangle. In general, the total number of automorphisms of a Kn is n!;
any permutation of their vertices will not change whether this graph looks like a Kn. For
a less trivial example, the graph on three vertices {1, 2, 3} consisting of one edge from 1 to
2 has just one automorphism, namely switching vertices 1 and 2.

This process lets us count the number of occurrences of tons of different kinds of graphs!
However, it only works on finding induced copies of some given graph as a subgraph: i.e.
subgraphs where we’ve completely determined which edges we want to exist and which
others we don’t want to exist within the vertices we’ve picked out.

We often don’t want to be this picky. For example, a quantity we could want to count
in a random graph is the number of k-cycles (not necessarily induced!) we’d expect to see:

Question 4 Take any k-cycle, and let c(H) denote the function that takes in a graph H
and outputs the total number of distinct labeled copies of Ck (not necessarily induced) in H.
What is the expected value of c over Gn,1/2?

Answer. Again, we have∑
ways to pick k distinct labeled vertices

P(these labeled s vertices form a copy of Ck)

=
∑

ways to pick k distinct labeled vertices

(
given v1 . . . vk,

k∏
i=1

P((vi, vi+1) is an edge)

)

=
∑

ways to pick k distinct labeled vertices

1

2k

=n · (n− 1) · . . . (n− k + 1)
1

2k
.

Like the above examples, this process counts labeled cycles; if you want to ignore the
labeling, simply divide the formula above by the number of symmetries of a k-cycle, |D2k| =
2k.

Using the methods we’ve illustrated above, we can easily count the existence and ex-
pected number of occurrences of many different kinds of structure within a random graph.
Moving on from this, another quantity that seems worthwhile to study is the collection of
eigenvalues for a random graph: as I mentioned rather briefly in our last class, they can
often give you a large amount of information about your graph.

Question 5 Given a graph H on n vertices, let λ1, . . . λn be the n eigenvalues corresponding
to the distinct orthogonal eigenvectors of A(H), the adjacency matrix of H. Order them
such that |λ1| ≥ . . . ≥ |λn|. Suppose that H is a random element of Gn,1/2. What are the
expected values of these eigenvalues?
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Answer. First, let’s study λ1, the largest eigenvalue in terms of magnitude of our graph
H. Because A = A(H) is symmetric and therefore we have n orthogonal eigenvectors for
H, we know that for any vector v ∈ Rn, we have

||Av|| ≤ |λ1| · ||v||.

This is because (in a sense) λ1 is the “largest” direction in which A can stretch space;
therefore, if we multiply any vector v by our matrix, it cannot be stretched as much as it
would be if it were pointing in the direction given by the eigenvector corresponding to λ1.

In particular, if we let v = (1, 1, . . . 1), we have ||A(1, . . . 1)|| = |λ1| · ||(1, . . . 1)||. But

A(1, 1, . . . 1) = (deg(v1),deg(v2), . . .deg(vn)) ,

where the vi’s are the vertices of H, because the dot product of (1, 1 . . . 1) with any row of
A just returns the total number of 1’s in that row: i.e. the number of edges leaving that
corresponding vertex.

We can easily calculate the expected value of any deg(vi): it’s just n−1
2 , because we flip

a coin for every edge. Therefore, if we use this observation, we have the observation that
we will typically expect to see

A(1, 1, . . . 1) = (deg(v1), deg(v2), . . .deg(vn)) =
n− 1

2
· (1, . . . 1),

and therefore that |λ1| ≥ n−1
2 .

How about the other eigenvalues? Also, this is just a lower bound: can we improve this
to an upper bound as well? To answer both of these questions, recall the theorem on walks
we proved yesterday:

Theorem 6 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. Then
the (i, j)-th entry of Ak denotes the number of distinct walks of length k from i to j.

In particular, this tells us that for our random graph H, the sum of the entries on the
diagonal of A4 correspond to all of the walks of length 4 that start and end at the same
point! There are three kinds of these walks:

1. The walks that start at some vertex v, go to another vertex w, return to v, go to
another vertex w′, and return to v again. These correspond to the number of (po-
tentially not distinct) pairs of edges that you can pick leaving a vertex v. There are
at most (deg(v))2 ≤ n2 many such walks, starting at any vertex v, and therefore less
than n3 many such walks in total.

2. The walks that start at some vertex v, go to another vertex w, travel to a third vertex
x, and then return to w and then return from there to v. In other words, these are
all of the paths of length 2 starting from v, that then return along that same path to
v. There are at most deg(v) · (maxw∈n(v)(deg(w)− 1) ≤ n2 many such walks starting
at v, and therefore ≤ n3 many walks in total.

3. The actual 4-cycles starting and ending at v. By our earlier calculations, there are

n(n− 1)(n− 2)(n− 3) · 1

16

many such labeled 4-cycles in our graph in total.
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Therefore, the sum of the entries along our diagonal is at most

n(n− 1)(n− 2)(n− 3) · 1

16
+ 2n3 =

n4 + 26n3 + 11n2 − 6n

16
.

However, notice that the eigenvalues of A4 are simply the fourth powers of the eigenvalues
λ1 . . . λn, and that the trace of a matrix is the sum of its eigenvalues! Therefore, we can
combine our upper bound with these observations to get

n∑
i=1

λ4i ≤
n4 + 26n3 + 11n2 − 6n

16
.

Because |λ1| ≥ n−1
2 , we have λ41 ≥ n4−4n3+4n2−4n+1

16 , and therefore that

n∑
i=2

λ4i ≤
n4 + 26n3 + 11n2 − 6n

16
− n4 − 4n3 + 4n2 − 4n+ 1

16

=
30n3 + 7n2 − 2n+ 1

16
.

In particular, this tells us that

λ42 ≤
30n3 + 7n2 − 2n+ 1

16

⇒|λ2| ≤
(

30n3 + 7n2 − 2n+ 1

16

)1/4

≤ 21/4n3/4.

In particular, this is a bound that grows much slower than n (i.e. is o(n).) Therefore,
because |λ2| ≥ |λi|, i ≥ 2, we have that all of the eigenvalues λi, i 6= 1 are o(n) in growth,
and in particular have the bound we derived above.

Furthermore, we can also use this bound to get that

n∑
i=1

λ4i ≤
n4 + 26n3 + 11n2 − 6n

16

⇒λ41 ≤
n4 + 26n3 + 11n2 − 6n

16

⇒λ1 ≤
(
n4 + 26n3 + 11n2 − 6n

16

)1/4

.

As n gets increasingly large, this bound becomes ≤ (1 + ε)n2 , for any given constant ε > 0
that you care to pick, because εn4 grows much much faster than 26n3+11n2−6n. Therefore,
we have that λ1 is sandwiched in between n−1

2 and n
2 , for large values of n.
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