
Random and Quasirandom Graphs Instructor: Padraic Bartlett

Lecture 1: Background: Probability, o(n), and Connecting LA to GT

Week 4 Mathcamp 2012

This lecture is a brief crash course in probabilistic notation and ideas, o(n) notation,
and the connection between graph theory and linear algebra; consequently, it’s going to be
definition-heavy and full of ideas/vocabulary rather than theorems. But, if we do this, we
can actually survive the next n lectures!

1 Probability

Definition. A probability space is a set X together with a “likelihood” or “probability”
function P, that takes in subsets of X and outputs numbers in R. We ask that P satisfies
the following three properties:

• For any A ⊆ X, 0 ≤ P ≤ 1.

• P(X) = 1.

• For any A,B ⊆ X, if A and B are disjoint, then P(A) + P(B) = P(A ∪B).

We will often call subsets of X events: when we look at P(X), we are thinking of this as
the “likelihood that X” happens” according to our “likelihood” function P .

Given a function f : X → R, if X is finite, we denote the expected value of f as the
sum

E(f) =
∑
x∈X

f(x) · P(x).

(For infinite sets X, we would use the integral of f(x) over X, where the measure we’re
using on X is the function P. If you don’t know what a measure is, or even if you do,
completely ignore this note.)

From these properties, we can deduce a number of other pretty useful-straightforward
properties:

Proposition. Take any probability space (X,P).

1. P(AC) = 1− P(A).

2. P(∅) = 0

3. Given any two events A,B, P(A ∪B) = P(A) + P(B)− P(A ∩B).

These properties are fairly straightforward, and you should prove them if you don’t believe
them.

In mathematics, people are rarely precise enough to always explicitly state the proba-
bility space they’re working in; rather, they’ll just say “if you take a random blah, it will
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have property blarg with probability bargle.”1 This is sometimes not a good idea, as the
following example illustrates:

Problem. Take a circle of radius 1, and randomly choose a chord. What is the probability
that this chord is ≥

√
3?

Proof. Here’s one model of randomness: pick two points at random on the boundary of
our unit circle, and draw the line connecting them. By rotating so that the first point is
at the exact top of our circle, you can think of this as picking just one point somewhere on
the perimeter of the circle below, and drawing a chord from this point to the point at the
top of our circle.

You can check (geometry!) that the side lengths of the equilateral triangle inscribed above
has side length

√
3; therefore, our chord has length ≥

√
3 if and only if we pick our point

in the bottom 1/3 of our circle. In other words, our chord will be greater than
√

3 1/3 of
the time.

Alternately, here’s another model of randomness: randomly create a chord by randomly
picking a point in our circle and treating it as the midpoint of our chord. By rotation, we
can assume that this midpoint occurs on the dotted line below:

Half of the choices of this point will correspond to chords longer than the base of our triangle
(i.e. ≥

√
3) and the other half will correspond to shorter chords: i.e. our chord will be ≥

√
3

1/2 of the time.

1Usually they will use variables instead of saying “bargle.” Usually.
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The fact that 1/3 6= 1/2 shoud convince you of why carefully defining your probability
space is a good idea.

Throughout this class, this usually won’t be a problem: we’re typically going to work in
the probability space Gn,1/2, which is the set of all graphs on n vertices together with the
probability function that sets

P(A) =
|A|
|X|

=
|A|
2(n2)

.

In other words, we weight all of our graphs as being equally likely.

2 o(n) Notation

This section is really straightforward.

Definition. A function f(n) is said to be o(n) if

lim
n→∞

f(n)

n
= 0.

Roughly speaking, this means that f(n) “grows much slower” than n as n heads off to
infinity. We can generalize this from n to other functions: a function f(n) is said to be
o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

Again, roughly speaking, this means that f(n) “grows much slower” than g(n).

Example. The function n 7→ sin(n) is o(n), because

lim
n→∞

sin(n)

n
= 0.

Similarly, sin(n) is also o(n2), because limn→∞
sin(n)
n2 = 0, and is also also o(ln(n)),

because limn→∞
sin(n)
ln(n) = 0..

3 Connecting Linear Algebra to Graph Theory

The following definitions really merit a course on their own; however, we only have a third
of a lecture. Keep in mind that there is a lot more going on here than you may think, and
that these ideas really merit closer study when you leave this class!

Definition. Take any n × n matrix A. We say that a vector v ∈ Rn is an eigenvector of
A, and λ1 ∈ R is an eigenvalue of A, if Av = λ1 · v.
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Definition. Given a graph G with vertex set {1, . . . n}, we define its adjacency matrix
AG as the following n× n matrix:

A = {aij : aij = 1 if {i, j} ∈ E(G), and 0 otherwise.}

One nice property of these adjacency matrices is that they are symmetric across their
main diagonal: i.e. (i, j) = (j, i), for any cell (i, j). We note this because of the following
theorem:

Theorem 1 (The spectral theorem:) Any symmetric matrix A has n eigenvalues (counting
multiplicity, i.e. the eigenvalue 1 could be repeated multiple times) and n corresponding
eigenvectors, all of which can be chosen to be orthogonal2 to each other.

In practice, we’re going to use this to simply say that any graph’s adjacency matrix will
have n eigenvalues corresponding to different eigenvectors. We care about this because
(surprisingly enough) the adjacency matric and eigenvalues of a graph are intimately related
to other graph properties, like the number of 4-cycles in a graph or the connectivity of the
graph! We present two quick properties here, to illustrate the power in these ideas and give
you a taste of what we’re going to do with linear algebra occasionally in this class:

Theorem 2 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. Then
the (i, j)-th entry of Ak denotes the number of distinct walks of length k from i to j.

Proof. First, consider A2, whose entries we’re claiming are connected to the number of
walks of length 2 in our graph.

Think about a walk of length two between two vertices i, j in the following sense: any
such walk must first connect i to some vertex v with an edge, and then connect v to j.
In other words, if we want to count the total number of these walks, we would want to
calculate the sum

n∑
v=1

isEdge(i, v) · isEdge(v, j).

But wait! We’ve defined these isEdge functions earlier – specifically, we defined the
adjacency matrix AG of G in such a way that aij = 1 whenever there is an edge from i to j,
and 0 otherwise. So, in this notation, we have that the number of walks from i to j is just

n∑
v=1

aiv · avk,

which we can recognize as the dot product

[
ai1 ai2 . . . ain

]
·


a1j
a2j
. . .
anj

 .
But this is just the dot product of the i-th row and the j-th row of AG! So, we’ve just

proven the following:

2Two vectors v,w are orthogonal if their dot product v ·w = (v1w1, . . . vn, wn) is the 0-vector (0, 0, . . . 0).
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Proposition 3 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A.
Then the (i, j)-th entry of A2 denotes the number of walks of length 2 from i to j.

We can easily generalize this to walks of length k, via induction on k. Suppose that
we know that the entries of Ak correspond to the number of walks of length k from i to j.
Given i and j, how can we find all of the walks of length k + 1 from i and j?

Well: any walk of length k + 1 from i to j can be described as a walk from i to some
vertex v of length k, and then a walk of length 1 from v to j itself! So, if we just simply
use the summation trick we used before, we can see that

numberOfWalksk+1(i, j) =
n∑

v=1

numberOfWalksk(i, v) · isEdge(v, j)

= (i, j)− th entry of Ak
G ·AG

= (i, j)− th entry of Ak+1
G .

The above hopefully illustrates why we would care about the adjacency matrix in this
class: it gives us a fantastically useful way to calculate the number of paths in a matrix! In
particular: take the Petersen graph

1

2

34

5
6

7

89

10

The adjacency matrix of this graph is

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0
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You can calculate that the third power of this matrix is

0 5 2 2 5 5 2 2 2 2
5 0 5 2 2 2 5 2 2 2
2 5 0 5 2 2 2 5 2 2
2 2 5 0 5 2 2 2 5 2
5 2 2 5 0 2 2 2 2 5
5 2 2 2 2 0 2 5 5 2
2 5 2 2 2 2 0 2 5 5
2 2 5 2 2 5 2 0 2 5
2 2 2 5 2 5 5 2 0 2
2 2 2 2 5 2 5 5 2 0


and the fourth power is

15 4 9 9 4 4 9 9 9 9
4 15 4 9 9 9 4 9 9 9
9 4 15 4 9 9 9 4 9 9
9 9 4 15 4 9 9 9 4 9
4 9 9 4 15 9 9 9 9 4
4 9 9 9 9 15 9 4 4 9
9 4 9 9 9 9 15 9 4 4
9 9 4 9 9 4 9 15 9 4
9 9 9 4 9 4 4 9 15 9
9 9 9 9 4 9 4 4 9 15


.

Using these observations, you can instantly see that (because the trace of A3 is 0) there are
no triangles as subgraph of the Petersen graph, because entries on the diagonal correspond
to paths of length 3 that start and end at the same place: i.e. triangles! More obscurely,
you can use that because every entry on the diagonal of A4 is 15, that there are no 4-cycles
in the Petersen graph (why? Prove this!)

Proposition 4 A graph G is bipartite if its spectrum is symmetric about 0 (i.e. λ is an
eigenvalue of AG iff −λ is.)

Proof. Write G = (V1 ∪ V2, E),, where V1 = {1, 2, . . . k} and V2 = {k + 1, k + 2, . . . n}
partition G’s vertices. In this form, we know that the only edges in our graph are from V1
to V2. Consequently, this means that AG is of the form

0 B

BT 0
,

where the upper-left hand 0 is a k × k matrix, the lower-right hand 0 is a n − k × n − k
matrix, B is a (n− (k + 1))× k matrix, and BT is the transpose of this matrix.

Choose any eigenvalue λ and any eigenvector (v1, . . . vk, wk+1, . . . wn) = (v,w). Then,
we have

AG · (v,w) =
0 B

BT 0
·
[

v
w

]
=

[
B ·w
BT · v

]
=

[
λ · v
λ ·w

]
= λ

[
v
w

]
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But! This is not the only eigenvector we can make out of v and w. Specifically, notice
that if we multiply AG by the vector (v,−w), we get

AG · (v,−w) =
0 B

BT 0
·
[

v
−w

]
=

[
−B ·w
BT · v

]
=

[
−λ · v
λ ·w

]
= −λ

[
v
−w

]
.

In other words, whenever λ is an eigenvalue of AG, −λ is as well!
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