Random and Quasirandom Graphs	Instructor: Padraic Bartlett
Homework 4: Examples of Quasirandom Graphs	
Week 4	Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(-)$ problems are maybe tedious to attempt. (+) problems are harder than the others. $(++)$ problems are currently open.

1. Construct the Paley graphs of orders $5,7,11$. How many triangles do you see in each of these graphs? Do they look like they're occuring with the "same" frequency as random graphs?
2. Show that the complement of a Paley graph is the same Paley graph.
3. $(+)$ Construct the Paley graph of order 17, and show that neither this graph nor its complement contains a K_{4}. (This tells you that the Ramsey number $R(4,4) \geq 18$, by the way. In fact, it turns out that $R(4,4)$ is 18 , pretty much because of this graph! Attempt to prove this if you're intrigued.)
4. (+) Show (via computer search via Mathematica, I think) that the Paley graph on 101 elements does not contain a K_{6}, and neither does its complement. (This is the best bound we know on $R(6,6)$.)
