Homework 2: Random and Quasirandom Graphs

Week 4
Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(-)$ problems are maybe tedious to attempt. (+) problems are harder than the others. $(++)$ problems are currently open.

1. (-) Check by hand that the total number of triangles in the collection of all graphs on 4 vertices is 32 .
2. Let C_{5} be a 5 -cycle. At what value of n does the total expected number of 5 cycles in a random graph on n vertices exceed 1?
3. Let P be the Petersen graph. At what value of n does the total expected number of copies of P in a random graph on n vertices exceed 1?
4. Create a few random graphs and check their eigenvalues (probably with Mathematica/Wolfram Alpha if you want this to not take a while). Do you see eigenvalues that correspond with what we predicted in class?
5. A graph is called connected if there is a path between any two vertices within the graph. Show that as $n \rightarrow \infty$, the probability that a random graph is connected goes to 1 .
