
Proof Techniques Instructor: Padraic Bartlett

Lecture 1: The Art and Technique of Proof

Week 1 Mathcamp 2012

1 What is a Proof?

Every major field of study in academia, roughly speaking has a way of “showing” that
something is true. In English/critical literature studies, if you wanted to argue that the
concept of whiteness in Melville’s Moby Dick was intrinsically tied up with mortality, you
would write an essay that quoted Melville’s epic story alongside some of of his other writings
and perhaps some contemporary literature, and logically argue (using these quotations
as “evidence”) that your claim holds. Similarly, if you were a physicist and you wanted
to demonstrate Bell’s inequality, which roughly states that local realism and quantum
mechanics are incompatible theories, you’d create an experiment under which these two
theories necessarily predict different outcomes.

In mathematics, a proof is what we call an argument for showing that something is
true. To define the concept of mathematical proof, then, it suffices to define the words
“something,” “argument” and “true.” This may sound pedantic and perhaps silly, but
consider the following cautionary examples of “failed” proofs:

Theorem. I am infallible.

Proof. First, recall the following two facts:

• All mentors are infallible.

• Paddy is a mentor.

Because Paddy is a mentor and all mentors are infallible, we can logically conclude that
Paddy is infallible.

The flaw here, obviously, is that one of the two things we claimed at the start of this proof
– that all mentors are infallible – is clearly false.1 Whenever we’re making a proof, if we
want to insure that we get something true at the end, we need to insure somehow that we
never do something like the above; i.e. that we never accidentally assume false statements
during the course of our proof. But this gets us back to one of the words we’re trying to
define: what does it mean for something to be true or false? Mathematically, we define
these concepts recursively as follows:

Definition. A mathematical statement is true if and only if we have a mathematical proof
for that statement.

1As anyone who’s ever played frisbee with us can attest to. We fall over all the time.

1

http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/bell.html
http://en.wikipedia.org/wiki/Local_hidden_variable_theory


But wait, you may protest: that’s circular logic!2 If the only things we can use in math-
ematical proofs are true statements, and the only way we know if something is true is by
finding a mathematical proof for it, we would seem to have no way of actually showing
anything is true. To avoid this, we also introduce the concept of axioms:

Definition. We also have a small collection of statements, called axioms, which we assume
to be true without proof.

For example, in set theory, we have the ZFC axioms of set theory, a collection of roughly
ten rules that we can use to prove most of the major results in that branch of mathematics.

Typically, when we’re proving a mathematical statement, we won’t worry so much about
whether the axioms we’re working from are “naturally true” or not (what would this mean,
anyways?); rather, we will often just state at the start of our proof what we’re assuming to
be true, and logically proceed from there. For example, the proof above was a completely
logical proof of the claim “If all mentors are infallible, then Paddy is infallible:” if that first
statement was true, then I would indeed be infallible.

This gives us a notion of “truth.” Before we go much further, we should use this idea
to give us an idea of what statements are:

Definition. A statement (or proposition, or claim) is just some object that is either true
or false. For example, the following are statements:

• P =“Every even number greater than 2 can be expressed as the sum of six primes” is
a statement; this one happens to be true (a result in number theory, proven in 1995
by the French mathematician Olivier Ramaré.)

• Q = “Every even number can be expressed as the sum of two primes” is another
statement; this one is false, as the number 2 cannot be expressed as the sum of two
other primes (as there are no prime numbers smaller than 2.)

• R = “Every even number greater than 2 can be expressed as the sum of two primes”
is a third statement; this is Goldbach’s conjecture, a famous open problem in number
theory. It is either true or false, but mathematicians have not yet discovered which.

Often, we will work with mathematical statements that depend on a variable. For example,
we can write

P (n) = “A n× n checkerboard can be covered by nonoverlapping 2× 1 dominoes;”

this statement will be false for odd values of n, and true for even values of n (if you don’t
immediately see why, prove this!)

Definition. Given some statements, we will often want ways to combine them into new
statements. The following list contains some of the most common combinations:

1. Given two mathematical statements P and Q, we will often want to form the math-
ematical statement “P and Q”, denoted P ∧ Q. This denotes the mathematical
statement that is true if and only if both P and Q hold, and is false otherwise.

2See footnote 2 for a definition of circular logic.
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2. Given two statements P and Q, we can form the mathematical statement “P or Q”,
denoted P ∨Q. This denotes the mathematical statement that is false if and only if
both P and Q are false, and is true otherwise.3

3. Given a statement P , we can formulate the mathematical statement “not-P ,” which
we denote ¬P . This is the mathematical statement that is false whenever P is true,
and true whenever P is false.

4. Given two statements P and Q, we can form the mathematical statement “P is
equivalent to Q”, denoted P ⇔ Q. This denotes the mathematical statement that is
true when P and Q are either both true or both false, and false otherwise (i.e. when
exactly one of P , Q are true, and the other is false.)

5. Given two statements P and Q, we can form the mathematical statement “P implies
Q”, denoted P ⇒ Q. This denotes the mathematical statement that is false if and
only if P is true while Q is false; under any other situation, we consider P ⇒ Q to be
true. Notably, this means that if P is false, P ⇒ Q is true no matter what Q does;
this allows us to say that statements like “If I am a purple elephant, then six is an
odd number” are true4. (Because the P part is false, it doesn’t matter whether the
Q part is complete nonsense or not; our implication is automatically true.)

Additionally, we will often use the shorthand ∀ “for all,” ∃ “exists,” ∈ “in,” and /∈ “not
in,” because we say these things all the time and it really simplifies statements.

We now understand the idea of truth, and how to work with and evaluate claims. This
leaves us with one last object to clarify: the idea behind “argument.” Consider the following
cautionary example:

Theorem. All odd numbers are prime.

Proof. 3 is prime, 5 is prime, 7 is prime . . . seems to always hold.

In this example, the issue is not that we introduced false statements: the numbers 3, 5
and 7 are all indeed prime. Rather, the problem is that the logic we used to link these facts
to our conclusion — “if a statement holds for the first few examples we look at, it must
be true in general” — is false. Discussing what it formally means for a piece of logic to be
“valid” in a mathematical proof is a rather complicated thing to rigorously do (if you’re
interested, a course in first-order logic might be worthwhile); for our purposes, however,
we won’t worry about this too much. Specifically, you all already know pretty much what
logical leaps are valid and which are not. For example, you know that the following logical
constructions make sense:

3In mathematics, we almost always assume that our “or” is an inclusive-or: i.e. it is true when either
P or Q is true, or even when both P and Q are true. In computer science, however, you will sometimes
run into “exclusive-or,” which is true when either P or Q is true, but is false when both are true. For your
mathcamp classes, you’re probably safe to assume that all “or” statements are inclusive-or, unless explicitly
stated otherwise.

4Provided we are not purple elephants.
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• If both of the statements A and B are true, then either one of the statements A or
B are true: roughly speaking, this is like saying that if you have a dog and a cat, it
is also true that you have a dog. In terms of the constructions above, this is saying
that if A ∧B is true, then so is A (and similarly so is B.)

• If the statement A is true, and you know that whenever the statement A is true it
forces the statement B to be true (in other words, you know that A implies B, or
in symbols A ⇒ B), then you know that B must be true. Again, roughly speaking,
this is like saying that knowing the two facts (it’s raining) + (whenever it rains, it’s
wet outside) tells you that it’s wet outside. In terms ofthe constructions above, this
is saying that knowing that A⇒ B is true, along with A being true, tells you that B
is true.

• If you know that A⇒ B, and also that the statement B is false, then you know that
there’s no way that the statement A can also be true: i.e. that A is false as well.
Again, to give an example, this is like stating that knowing (If there was not another
season of My Little Pony, I would be sad) + (I am not sad) tells you that there will
be another season of My Little Pony. In terms of the constructions from earlier, this
is like saying that if A⇒ B is true and B is false, then A must also be false.

Conversely, you also know that the following arguments don’t actually work for proving
statements:

• Just because a property holds for the first few values you examine, doesn’t mean
that it’s always true. A famous example is the Pólya conjecture, which fails only at
906, 150, 206 but holds true for every number up to that value.

• Just because A ⇒ B, doesn’t mean that B ⇒ A: a quick example is noting that
just because I cheer at my television whenever Messi scores a goal, doesn’t mean that
Messi will score a goal if I cheer at my television. This is a special example of the
idea that correlation does not imply causation: just because two events are related to
each other doesn’t mean that they’re necessarily related in the way that we’d like.

In this class, we’re going to study the art of proof. This is a subject that could easily
take an entire textbook to develop; we limit ourselves to a few pages, in the interests of
time and teaching by example.

1.1 The Art of Proof

In the above section, we came up with a reasonably rigorous definition of what makes up a
proof:

1. A well-stated claim (i.e. one that contains all of the things we’re assuming to make
our claim true.)

2. A selection of statements we’ve previously proven true, along with perhaps some
axioms.
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3. A number of logical links between these statements, axioms, and assumptions that
concludes that our claim must be true.

This definition indeed captures the letter of what it means to be a proof; however, it
does not properly capture the spirit of what a proof should aspire to be! Consider the
following example:

Claim 1.

√
xy ≤ x + y

2
.

Proof.

√
xy ≤ x + y

2

xy ≤ (x + y)2

4
4xy ≤ (x + y)2

4xy ≤ x2 + 2xy + y2

0 ≤ x2 − 2xy + y2

0 ≤ (x− y)2.

This proof is awful. Why? Well, first and foremost, it has no words! In fact, we have
absolutely no idea what we’re even proving, nor any idea what x and y are supposed to
be, nor any idea how the equations we’ve drawn are linked together. So: never do this!
Whenever you’re writing a proof, use words. Always tell your reader what you’re proving,
how you’re going about making said proof, and how you’re linking together any of these
steps.

For example, the thing above is supposed to be a proof of the arithmetic-geometric mean
inequality, which is the following claim:

Theorem 2. (AM-GM) For any two nonnegative real numbers x, y, we have that the geo-
metric mean of x and y is less than or equal to the arithmetic mean of x and y: in other
words, we have that

√
xy ≤ x + y

2
.

With this stated, we can then see the second flaw in the cautionary example above:
strictly as written, it’s not even a proof of the AM-GM! The failed proof above looks like
it starts off by assuming that the AM-GM is true, and then deduces a statement that
we already know to be true (any squared number is nonnegative.) This does not, by any
means, prove the statement we are claiming!
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For example, if we assume that 1=2, we can easily deduce a true statement by multi-
plying both sides by 0:

1 = 2

⇒0 · 1 = 0 · 2
⇒0 = 0.

Does this prove 1=2? No! As we stated above, proofs can only take in as admissible
evidence things we already know to be true. In specific, to prove a statement is true,
you can’t, um, just assume that the statement is true.

In specific, what does this mean for our proof of the AM-GM? Well, it means that
instead of starting with the AM-GM and deducing a true thing, we should start with some
true things and then deduce that the AM-GM is a consequence of these true things. We
present a fixed and fully functional proof here:

Theorem 3. (AM-GM) For any two nonnegative real numbers x, y, we have that the geo-
metric mean of x and y is less than or equal to the arithmetic mean of x and y: in other
words, we have that

√
xy ≤ x + y

2
.

Proof. Take any pair of nonnegative real numbers x, y. We know that any squared number
is nonnegative: so, in specific, we have that (x− y)2 is nonnegative. If we take the equation
0 ≤ (x− y)2 and perform some algebraic manipulations, we can deduce that

0 ≤ (x− y)2

⇒ 0 ≤ x2 − 2xy + y2

⇒ 4xy ≤ x2 + 2xy + y2

⇒ 4xy ≤ (x + y)2

⇒ xy ≤ (x + y)2

4
.

Because x and y are both nonnegative, we can take square roots of both sides to get

√
xy ≤ |x + y|

2
.

Again, because both x and y are nonnegative, we can also remove the absolute-value signs
on the sum x + y, which gives us

√
xy ≤ x + y

2
,

which is what we wanted to prove.
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In terms of the formulas used, this proof is identical to the “awful” proof we had earlier;
however, because we changed the ordering of these formulas and added a lot of discussion
about precisely “what” we’re trying to prove and why we can justify the steps we’ve made,
this proof is a lot more satisfying and persuasive.

1.2 Pictures and Proofs

Words and symbols are not the only tool in proofs! In fact, well-chosen and drawn diagrams
can often illustrate an idea that would otherwise take pages of text to describe. Pictures
alone are rarely proofs: words are almost always necessary to explain what’s going on, and
you’ll have to do some calculations to solve almost any problem. However, a well-placed
picture can often be invaluable, as we demonstrate in the following example:

Claim 4. For any n ∈ N, we have the following identity:
n∑

k=1

1

4k
=

1− (1/4)n

3
.

(The
∑n

k=1-expression above is a shorthand way of writing the sum 1
4 + 1

42
+ 1

43
+ . . . + 1

4n .
In general, the

∑
symbol is used for this kind of shorthand, where we want to add up a

bunch of objects but don’t want to actually completely write out the sum each time.)

Proof. Consider the following construction:

1. Start by taking an equilateral triangle of area 1.

2. By picking out the midpoints of its three sides, inscribe withinin this triangle a smaller
triangle T1. Color this triangle green. Also, notice that by symmetry this green
triangle has area 1

4 , as drawing it has broken up our original triangle into four identical
equilateral triangles.

3. Take the “top” triangle of the three remaining white triangles, and repeat step 2 on
this triangle. This creates a new green triangle, T2, with area 1

4 of the white triangle’s
area: i.e. 1

4 ·
1
4 = 1

16 .

4. Keep repeating this process until we have drawn n green triangles, as depicted below:

h0

h1

h2

hn

T1

T2
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5. What is the combined area of all of the green triangles? On one hand, we’ve seen

that the area of each Tk is just
(
1
4

)k
, as T1 had area 1

4 and each green triangle after
the first had area 1

4 of the green triangle that came before it. Summing over all of the
green triangles, this tells us that

Area(Green) =

n∑
k=1

1

4k
.

6. On the other hand, as shown in our picture, we can see that between height h0 and
h1, green triangles are taking up precisely a third of the area of our original area-1
triangle. Similarly, green triangles are taking up a third of the area from h1 to h2,
h2 to h3, and so on/so forth all the way to hn, after which there are no more green
triangles.

Therefore, the total area of the green triangles is just a third of the area of our original
triangle that lies between height h0 and hn. Because the area of the last tiny white
triangle at the top is (by construction) equal to the area of Tn, i.e.

(
1
4

)n
, we then

have that

Area(Green) =
1

3
·
(

1−
(

1

4

)n)
.

By combining these two expressions for the total area of the green triangles, we have proven
that

n∑
k=1

1

4k
=

1− (1/4)n

3
.

1.3 Avoiding Overkill in Proofs

One last thing to mention in mathematics (that is particularly applicable to Mathcamp
students) is the following bit of warning about “overkill” in proofs. Many of you have seen
a lot of mathematics before: consequently, when you’re going through this course, you’re
often going to be tempted to use tools you’ve seen in other math classes (most notoriously,
L’Hôpital’s rule) to attack problems. Be careful about doing this! While sometimes you can
create some absolutely beautiful connections between your different classes by taking results
from one and putting them in the other, at other times you may find yourself accidentally
making problems trivial that would otherwise be fascinating by using a result that (is much
more complex than the result you’re studying / actually needs the proof of the problem
you’re studying in order to prove that result, so you’d be engaging in some circular logic).

For example, consider the following proof:

Theorem 5. 3
√

2 is irrational: i.e. there are no pair of positive integers p, q, q 6= 0, such
that 3

√
2 can be expressed as the fraction p

q .
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Proof. First, recall Fermat’s Last Theorem, a result formulated in 1637 by the mathemati-
cian Pierre de Fermat and proven in 1995 by the mathematician Andrew Wiles, whose proof
was the culmination of centuries of labor by scientists and mathematicians:

If n is a natural number ≥ 3, the equation

an + bn = cn

has no solutions with a, b, c ∈ N.

We’re going to use this to. . . prove that 3
√

2 is irrational.
To do this, suppose that we have expressed 3

√
2 as some ratio p

q , where p, q are a pair of
positive real numbers. Then, if we cube both sides, we have

p3

q3
= 2;

multiplying both sides by q3 then gives us

p3 = q3 + q3.

Fermat’s last theorem says that such a thing cannot exist, if p, q ∈ N; therefore, because
Fermat’s last theorem is true, we know that no matter how we’ve expressed 3

√
2 as a ratio

p
q , we can never have both p and q be positive integers. Therefore, 3

√
2 must be an irrational

number.

This proof works completely! – and yet, by reading it, we really haven’t gained any
better insights into what makes a number irrational. Good proofs are ideally ones that
illuminate the question at hand: not only do they rigorously show that the statement in
question is true, they also shed light on how the concepts involved in the proof work, and
how the reader might go about attacking similar problems.
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