
Proof Techniques Instructor: Padraic Bartlett

Homework 4

Week 1 Mathcamp 2012

Homework instructions: many of the problems below are labeled with the tags (∗) or
(+). (∗) denotes that the problem in question is fairly fundamental to the topics we’re
studying and is something that you should make sure you understand completely, while (+)
denotes a problem that may be much harder than some of the others on the set.

This class is homework-required! What this means is that I’m expecting you to try
every problem, to solve almost all of the (∗) ones, and most of the non-(+) ones. The (+)
ones are certainly problems you are capable of solving, and I want you solve some of these!
But they will not be as necessary for your ability to survive and thrive in later lectures, and
I don’t expect people to solve all of them. If you get stuck, or see a typo, find me! I can
offer tons of hints and corrections. HW will be handed in at the start of class every week;
I’ll try to look over solutions in between classes, and come up with comments.

1. [(∗)] Let x be an integer. Show that if x2 is even, x must also be even.

2. [(∗)] Find the flaw in the following proof:

Theorem 1 All ponies are the same color.

Proof. We proceed by induction. Specifically, let P (n) be the claim “In any collection
of n ponies, all of these ponies are the same color.”

Base case: we want to prove P (1). But P (1) is trivially true; in any collection made
of one pony, all of the ponies in that set are the same color.

Inductive case: we want to prove that P (n) ⇒ P (n + 1). In other words, we want
to prove that whenever P (n) is true, P (n + 1) is also true. To do this: assume that
P (n) is true, i.e. that in any set of n ponies, all of those ponies are the same color.
With this assumption, we want to prove that P (n + 1) is true: i.e. that in any set of
n + 1 ponies, all of these ponies are also the same color.

To do this: take any set of n + 1 ponies, and write them as the set {p1, . . . pn+1}.
Break this set up into two subsets of size n: the subset {p1, . . . pn} and the subset
{p2, . . . pn+1}. These are both sets of size n: by our inductive hypothesis, they are
both the same color. But these sets share the ponies p2, . . . pn in common! Therefore,
whatever color our first set {p1, . . . pn} is must be the same color as the second set
{p2, . . . pn+1}, because they overlap! Therefore, all of our n + 1 ponies are the same
color, and we’ve proven that P (n + 1) is true (given our assumption P (n).)

So: we’ve proven that P (1) is true, and that P (n) ⇒ P (n + 1). Therefore, by
induction, we’ve proven that our claim P (n) is true for all n; if we let n be the total
number of ponies in existence, this proves our claim.
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3. For any n ∈ N, take a 2n × 2n grid of unit squares, and remove one square from
somewhere in your grid. Can you exactly cover all of the remaining squares using

these three-square tiles (along with their flips and rotations)?

4. [(+)] Some natural numbers can be expressed as a sum of smaller consecutive natural
numbers: for example, we can write 31 as 15 + 16, and 30 as 11 + 10 + 9. Others
cannot: for example, 32 cannot be written as the sum of smaller consecutive natural
numbers! Which natural numbers n cannot be expressed in this way? Which can?
(As always, prove your claim.)

5. [(∗)] Show that every number greater than 12 can be made from some combination of
4’s and 5’s.

6. Prove that every 4-th Fibonacci number is a multiple of 3. (Hint: show that f4k+4 =
5f4k + 3f4k−1, for any k.)

7. A lattice path in the plane R2 is a path joining integer points via steps of length 1
either upward or rightward. Show that for any a, b ∈ N, the number of lattice paths
from (0, 0) to the point (a, b) is

(
a+b
a

)
.

8. [(∗)] Given five integer points1 in the plane, prove that there is some pair of them
such that the midpoint of the segment joining them is also an integer point.

9. [(∗)] Six people are sitting in a café. Prove that either three of them have never
met each other, or three of them all know each other. (Assume that knowledge is
symmetric: i.e. if A knows B, B also knows A.)

10. [(+)] In class, we proved that in any string of n2+1 real numbers, there must be some
monotone subsequence of length n + 1. Prove that this result is the best we could
hope for, in the following sense: for any n, create a set of n2 real numbers such that
it does not contain any monotone subsequence of length n + 1.

11. Take five points within a square of side length 1. Prove that there must be two points

that are within
√
2
2 of each other. Similarly, show that if you take nine points within

a cube with side length 1, there must be two that are within
√

3 of each other.

1In other words, a point with coördinates (a, b), where a and b are both integers.
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