Proof Techniques	Instructor: Padraic Bartlett	
	Homework 4	
Week 1		Mathcamp 2012

Homework instructions: many of the problems below are labeled with the tags (*) or $(+) .(*)$ denotes that the problem in question is fairly fundamental to the topics we're studying and is something that you should make sure you understand completely, while (+) denotes a problem that may be much harder than some of the others on the set.

This class is homework-required! What this means is that I'm expecting you to try every problem, to solve almost all of the $(*)$ ones, and most of the non- $(+)$ ones. The $(+)$ ones are certainly problems you are capable of solving, and I want you solve some of these! But they will not be as necessary for your ability to survive and thrive in later lectures, and I don't expect people to solve all of them. If you get stuck, or see a typo, find me! I can offer tons of hints and corrections. HW will be handed in at the start of class every week; I'll try to look over solutions in between classes, and come up with comments.

1. $[(*)]$ Let x be an integer. Show that if x^{2} is even, x must also be even.
2. [(*)] Find the flaw in the following proof:

Theorem 1 All ponies are the same color.
Proof. We proceed by induction. Specifically, let $P(n)$ be the claim "In any collection of n ponies, all of these ponies are the same color."
Base case: we want to prove $P(1)$. But $P(1)$ is trivially true; in any collection made of one pony, all of the ponies in that set are the same color.

Inductive case: we want to prove that $P(n) \Rightarrow P(n+1)$. In other words, we want to prove that whenever $P(n)$ is true, $P(n+1)$ is also true. To do this: assume that $P(n)$ is true, i.e. that in any set of n ponies, all of those ponies are the same color. With this assumption, we want to prove that $P(n+1)$ is true: i.e. that in any set of $n+1$ ponies, all of these ponies are also the same color.
To do this: take any set of $n+1$ ponies, and write them as the set $\left\{p_{1}, \ldots p_{n+1}\right\}$. Break this set up into two subsets of size n : the subset $\left\{p_{1}, \ldots p_{n}\right\}$ and the subset $\left\{p_{2}, \ldots p_{n+1}\right\}$. These are both sets of size n : by our inductive hypothesis, they are both the same color. But these sets share the ponies $p_{2}, \ldots p_{n}$ in common! Therefore, whatever color our first set $\left\{p_{1}, \ldots p_{n}\right\}$ is must be the same color as the second set $\left\{p_{2}, \ldots p_{n+1}\right\}$, because they overlap! Therefore, all of our $n+1$ ponies are the same color, and we've proven that $P(n+1)$ is true (given our assumption $P(n)$.)
So: we've proven that $P(1)$ is true, and that $P(n) \Rightarrow P(n+1)$. Therefore, by induction, we've proven that our claim $P(n)$ is true for all n; if we let n be the total number of ponies in existence, this proves our claim.
3. For any $n \in \mathbb{N}$, take a $2^{n} \times 2^{n}$ grid of unit squares, and remove one square from somewhere in your grid. Can you exactly cover all of the remaining squares using these \square three-square tiles (along with their flips and rotations)?

4. $[(+)]$ Some natural numbers can be expressed as a sum of smaller consecutive natural numbers: for example, we can write 31 as $15+16$, and 30 as $11+10+9$. Others cannot: for example, 32 cannot be written as the sum of smaller consecutive natural numbers! Which natural numbers n cannot be expressed in this way? Which can? (As always, prove your claim.)
5. [(*)] Show that every number greater than 12 can be made from some combination of 4's and 5's.
6. Prove that every 4 -th Fibonacci number is a multiple of 3 . (Hint: show that $f_{4 k+4}=$ $5 f_{4 k}+3 f_{4 k-1}$, for any k.)
7. A lattice path in the plane \mathbb{R}^{2} is a path joining integer points via steps of length 1 either upward or rightward. Show that for any $a, b \in \mathbb{N}$, the number of lattice paths from $(0,0)$ to the point (a, b) is $\binom{a+b}{a}$.
8. [(*)] Given five integer points ${ }^{1}$ in the plane, prove that there is some pair of them such that the midpoint of the segment joining them is also an integer point.
9. $[(*)]$ Six people are sitting in a café. Prove that either three of them have never met each other, or three of them all know each other. (Assume that knowledge is symmetric: i.e. if A knows B, B also knows A.)
10. $[(+)]$ In class, we proved that in any string of $n^{2}+1$ real numbers, there must be some monotone subsequence of length $n+1$. Prove that this result is the best we could hope for, in the following sense: for any n, create a set of n^{2} real numbers such that it does not contain any monotone subsequence of length $n+1$.
11. Take five points within a square of side length 1 . Prove that there must be two points that are within $\frac{\sqrt{2}}{2}$ of each other. Similarly, show that if you take nine points within a cube with side length 1 , there must be two that are within $\sqrt{3}$ of each other.

[^0]
[^0]: ${ }^{1}$ In other words, a point with coördinates (a, b), where a and b are both integers.

