Homework 3

Week 1

Homework instructions: many of the problems below are labeled with the tags (*) or $(+) .(*)$ denotes that the problem in question is fairly fundamental to the topics we're studying and is something that you should make sure you understand completely, while (+) denotes a problem that may be much harder than some of the others on the set.

This class is homework-required! What this means is that I'm expecting you to try every problem, to solve almost all of the $(*)$ ones, and most of the non $-(+)$ ones. The $(+)$ ones are certainly problems you are capable of solving, and I want you solve some of these! But they will not be as necessary for your ability to survive and thrive in later lectures, and I don't expect people to solve all of them. If you get stuck, or see a typo, find me! I can offer tons of hints and corrections. HW will be handed in at the start of class every week; I'll try to look over solutions in between classes, and come up with comments.

1. [(*)] For any pair of real numbers a, b such that $a<b$, find a bijection between the sets $[0,1]$ and $[a, b]$.
2. Find a bijection between the sets $(-1,1)$ and \mathbb{R}.
3. $[(+)]$ Find a bijection between the sets $[0,1]$ and $(0,1)$.
4. $[(*)]$ Are the sets \mathbb{N} and \mathbb{N}^{3} (i.e. the set of all triples (a, b, c), where a, b, c are all natural numbers) the same size?
5. Let X denote the set made out of all possible sequences of natural numbers with finite length: i.e. for every element x of X, there is some length k such that x looks like some string ($n_{0}, n_{1}, \ldots n_{k}$), where the $n_{1} \ldots n_{k}$'s are all natural numbers. Is this set the same size as \mathbb{N} ?
6. Let Y denote the set made out of all possible sequences of natural numbers with infinite length: i.e. for every element y of Y, y looks like some string $\left(n_{0}, n_{1}, \ldots\right)$, where the elements n_{i} are natural numbers. Is this set the same size as \mathbb{N} ?
7. $[(+)]$ Let A and B be a pair of sets, $f: A \rightarrow B$ an injective function, and $g: B \rightarrow A$ another injective function. Show that there is a bijection from A to B.
8. $[(+)]$ A real number r is called algebraic if and only if there is some degree n and integer constants $a_{0}, \ldots a_{n}$ such that r is a root ${ }^{1}$ of the following polynomial:

$$
a+0+a_{1} x+\ldots+a_{n} x^{n}
$$

Most numbers you know are algebraic: for example, all of \mathbb{Q} is (they're roots of the polynomial $q x-p$), as is $\sqrt{2}$ (it's a root of $x^{2}-2$) and most other things.
Show that \mathbb{N} has the same cardinality (size) as \mathcal{A}, the collection of all algebraic numbers.

[^0]
Latin squares

On one hand: Latin squares can be used to do anything. You can use Latin squares to send encrypted messages, you can turn Latin squares to break large complicated graphs into lots of smaller ones, you can convert a Latin square into a schedule for running experiments with lots of potentially-correlated variables, and you can even turn sets of them into beautiful geometric pictures:

On the other hand: Latin squares are really just dumbed-down Sudoku grids (specifically, they're $n \times n$ arrays filled with the symbols $\{1, \ldots n\}$, such that no symbol is repeated twice in any row or column.)

So: how can such simple things have so many complicated and beautiful applications? In this class, we will study as many applications of Latin squares as we can; in theory, by the end you will both have a deep understanding of how Latin squares work alongside a broad idea of their applications across all of mathematics.

[^0]: ${ }^{1}$ A root of a polynomial is a number you can plug into that polynomial and get 0 . For example, 2 is a root of the polynomial $x^{2}-4$, because plugging in 2 for x yields 0 .

