Proof Techniques	Instructor: Padraic Bartlett	
	Homework 2	
Week 1		Mathcamp 2012

Homework instructions: many of the problems below are labeled with the tags (*) or $(+) .(*)$ denotes that the problem in question is fairly fundamental to the topics we're studying and is something that you should make sure you understand completely, while (+) denotes a problem that may be much harder than some of the others on the set.

This class is homework-required! What this means is that I'm expecting you to try every problem, to solve almost all of the $(*)$ ones, and most of the non- $(+)$ ones. The $(+)$ ones are certainly problems you are capable of solving, and I want you solve some of these! But they will not be as necessary for your ability to survive and thrive in later lectures, and I don't expect people to solve all of them. If you get stuck, or see a typo, find me! I can offer tons of hints and corrections. HW will be handed in at the start of class every week; I'll try to look over solutions in between classes, and come up with comments.

1. Let x, y be a pair of irrational numbers: i.e. elements in \mathbb{R} that are not elements of \mathbb{Q}. Either prove that the following statements are true, or disprove them by finding a pair of elements x, y that show that this statement is false:

- $x+y$ is irrational.
- $x \cdot y$ is irrational.

2. $[(*)]$ Prove, using only the axioms that we listed for \mathbb{Z} (i.e. the ring axioms along with the ordering axioms) that $x^{2}>0$, for any x.
3. $[(*)]$ Prove, using only the axioms that we listed for \mathbb{Q} (i.e. the field axioms along with the ordering axioms) that for any $x, y>0$ in \mathbb{Q}, there is some $n \in \mathbb{N}$ such that $n \cdot x>y$.
4. Prove that $\sqrt{3}-\sqrt{5}$ is an irrational number: i.e. that $\sqrt{3}-\sqrt{5}$ is not an element of \mathbb{Q}.
5. $[(*)],[(+)]$ Take any two elements $p, q \in \mathbb{Q}$ such that $p<q$. Is there always an element $x \in \mathbb{R}$ such that $p<x<q$ and $x \notin \mathbb{Q}$? Prove your claim.
Similarly, take any two elements $p, q \in \mathbb{R}$ such that $p<q$. Is there always an element $x \in \mathbb{Q}$ such that $p<x<q$? Prove your claim.

Our last few questions deal with the concept of groups, which we define here. Students currently in a group theory class should only do the problems that are new to them / don't overlap with work they've already done.

Definition. Take a set G, along with an operation • that gives you some way to "combine" two elements in your group into a new element. Suppose that this operation + satisfies the following four properties that the integers, \mathbb{Z}, also did with respect to + : namely,

- Closure(+): $\forall a, b \in G$, we have $a+b \in G$.
- Identity (+): $\exists 0 \in G$ such that $\forall a \in G, 0+a=a$.
- Associativity(+): $\forall a, b, c \in G,(a+b)+c=a+(b+c)$.
- Inverses(+): $\forall a \in G, \exists$ a unique $(-a) \in G$ such that $a+(-a)=0$.

We call this kind of thing a group: in class, we claimed that $\langle\mathbb{Z},+\rangle,\langle\mathbb{Q},+\rangle$, and $\langle\mathbb{R},+\rangle$ were all groups.
6. [(*)] Given the above examples, you might think that all groups contain infinitely many elements. This is false! Take the following object:

- Your set is the numbers $\{0,1,2,3,4,5,6,7,8,9,10,11\}$.
- Your operation is the operation "addition mod 12 ," or "clock arithmetic," defined as follows: we say that $a+b \cong c \bmod 12$ if the two integers $a+b$ and c differ by a multiple of 12 . Another way of thinking of this is as follows: take a clock, and replace the 12 with a 0 . To find out what the quantity $a+b$ is, take your clock, set the hour hand so that it points at a, and then advance the clock b hours; the result is what we call $a+b$.
For example, $3+5 \equiv 8 \bmod 12$, and $11+3 \equiv 2 \bmod 12$.
We denote this object as $\langle\mathbb{Z} / 12 \mathbb{Z},+\rangle$. Show that this is a group.

7. $[(*)]$ Generalize this to $\langle\mathbb{Z} / n \mathbb{Z},+\rangle$ as follows:

- Your set is the numbers $\{0,1, \ldots n-1\}$.
- Your operation is the operation "addition $\bmod n$," defined as follows: we say that $a+b \equiv c \bmod n$ if the two integers $a+b$ and c differ by a multiple of n.
For example, for $n=3$, we would say that $2+2 \equiv 3 \bmod 1$, and $2+1=0$ $\bmod 3$. Similarly, for $n=10$, we say that $5+6 \equiv 1 \bmod 10$ and $7+7 \equiv 4$ $\bmod 10$.

Show that this is a group.
8. Similarly, we can define the operation "multiplication mod n " by saying that $a \cdot b \equiv c$ $\bmod n$ if $a \cdot b$ and c differ by a multiple of n, and the set $(\mathbb{Z} / n \mathbb{Z}) \backslash\{0\}$ as the set $\{1,2, \ldots n-1\}$.
Is $\langle(\mathbb{Z} / 5 \mathbb{Z}) \backslash\{0\}, \cdot\rangle$ a group? How about $\langle(\mathbb{Z} / 6 \mathbb{Z}) \backslash\{0\}, \cdot\rangle$?
9. $[(+)]$ The one axiom for arithmetic we didn't mention when talking about groups was the concept of commutativity:

- Commutativity (•): $\forall a, b \in \mathbb{N}, a \cdot b=b \cdot a$.

Find a group $\langle G, \cdot\rangle$ that does not satisfy this property. What is the smallest group (in terms of numbers of elements) that exists that does not satisfy this property?

