Many Campers Sort Piles	Instructor: Padraic Bartlett	
	Homework 2: Many Campers Sort Piles	
Week 4		Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(+)$ problems are harder than the others. $(++)$ problems are currently open.

1. Take the following lists, and apply quicksort and mergesort to put them in the right order:

- $(8,7,6,5,4,3,2,1)$.
- $(3,1,4,1,5,9,2)$.

2. The Towers of Hanoi is the following puzzle: Start with 3 rods. On one rod, place n disks with radii $1,2, \ldots n$, so that the disk with radius n is on the bottom, the disk with radius $n-1$ is on top of that disk, and so on/so forth.
The goal of this puzzle is to move all of the disks from one rod to another rod, obeying the following rules:

- You can move only one disk at a time.
- Each move consists of taking the top disk off of some rod and placing it on another rod.
- You cannot place a disk A on top of any disk B with radius smaller than A.

Find a recursive algorithm for solving this puzzle! How long does it take to complete your solution? Suppose that you can perform a move once every second, and you can perform moves until the heat death of the universe (10^{100} years, say.) What is the largest puzzle you can solve?
3. Consider the following algorithm (Stoogesort ${ }^{1}$!) for sorting a list: Take as input a list $L=\left(l_{1}, \ldots l_{n}\right)$.

- If your list contains one or two elements, sort it by just looking at the list.
- Otherwise, the list contains ≥ 3 elements. Let $M=\lceil 2 / 3\rceil$.
- Stoogesort the list $\left(l_{1}, \ldots l_{m}\right.$.
- Stoogesort the list $\left(l_{n-m}, \ldots l_{n}\right)$.
- Stoogesort the list $\left(l_{1}, \ldots l_{m}\right.$.

Prove that this algorithm sorts any list.

[^0]
[^0]: ${ }^{1}$ Named after the comedy routines of the Three Stooges; specifically, the ones where each stooge hits the other two.

