
Latin Squares Instructor: Padraic Bartlett

Lecture 8: Error-Correcting Codes and Latin Squares, Part 2/2

Week 3 Mathcamp 2012

1 A Quick Recap of Last Lecture

At the end of our last lecture, we defined the mathematical concepts of a code, as well
as the related concepts of information rates and distance. We review these definitions
here:

Definition. A q-ary code C of length n is a collection C of words of length n, written in
base q. In other words, C is just a subset of (Z/qZ)n.

Definition. Given a q-ary code C of length n, we define its information rate as the
quantity

logq(# of elements in C)

n

This, roughly speaking, captures the idea of how “efficient” a code is.

Definition. The Hamming distance dH(x,y) between any two elements x,y of (Z/qZ)n

is simply the number of places where these two elements disagree. Given a code C, we say
that the minimum distance of C, d(C), is the smallest possible value of dH(x,y) taken over
all distinct x,y within the code.

Theorem. A code C can correct up to t errors in any received codeword to the correct
codeword, as long as d(C) ≥ 2t + 1.

Given these definitions, the question we closed our lecture with yesterday was the fol-
lowing:

Problem. Suppose that you are given a base q, a length n for your codewords, and a
minimum distance d that you want your codewords to be from each other (because you
want to be able to correct up to d(d− 1)/2e many errors in any codeword, for example.)

What is the maximum size of C — in other words, what is the maximum information
rate you can get a code to have with these parameters?

For many values of q, n, d this problem is completely open: for example, we have no
idea what the largest code with n = 10, q = 2, d = 3 is, for example! This is surprising:
we’d really expect that we’d know the largest/most optimal codes for a problem as simple
as “find a binary code with words of length 10, such that we can handle up to one error in
every word.”

We mention this in a Latin squares class because it turns out that (while this problem
is open for most values of our parameters) we can use Latin squares to completely resolve
this question for a ton of parameters!

We start with a warm-up problem:

1



Problem. Take any base q. What is the largest code with all codewords of length 4, such
that the minimum distance between any two codewords is 3? (In other words, what’s the
largest q-ary code set of length 4 that can correct ≤ 1 error in any block of 4?)

Without too much effort, we can get a pretty nice upper bound for our possible codes:

Proposition. If C is a q-ary code of length 4 and minimum distance 3, |C| ≤ q2.

Proof. Take any two elements x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) from our code
C. Compare (x1, x2) and (y1, y2). If this pair agreed with each other, these two codewords
would be distance 2 from each other, which is impossible because d(C), the minimum
distance in our code, is 3. So they must differ.

So: there are q2 many such pairs to start off any of our codewords, and we’ve just shown
that we cannot repeat any of these pairs. Therefore, there can be at most q2-many elements
in C.

Surprisingly enough, it turns out that we can use our knowledge of Latin squares to
attain this bound!

Proposition 1 There is a q-ary code of length 4, distance 3, and containing q2 many
elements, whenever there are a pair of mutually orthogonal Latin squares of order q.

Proof. Before we begin, we illustrate the proof idea with an example: take two MOLS of
order 3.

A =

0 1 2

1 2 0

2 0 1

, B =

0 1 2

2 0 1

1 2 0

Consider the following construction:

location sA sB
(0, 0) 0 0
(0, 1) 1 1
(0, 2) 2 2
(1, 0) 1 2
(1, 1) 2 0
(1, 2) 0 1
(2, 0) 2 1
(2, 1) 0 2
(2, 2) 1 0

−→

codewords

0000
0111
0222
1012
1120
1201
2021
2102
2210

Create a list of all of the 32 possible cell locations in a 3× 3 grid. For each location, write
down the symbol in square A and the symbol in square B: this creates the table at left. If
you compress these columns together, you get the list of codewords at the right.

Notice that this table of of codewords has the following property: if you are given any
two of the four digits of a codeword, you can uniquely determine which codeword you started
with. To see this, simply notice that knowing the row along with either the column, sA,,

2



or sB uniquely determines what cell we’re talking about (because of the Latin property of
both A and B,) and therefore uniquely determines the rest of the values. Similarly, knowing
the column and any other position also uniquely determines the cell we’re studying, and
therefore the codeword. Finally, if you know sA and sB, you know all of the other values
because this is a pair of mutually orthogonal Latin squares, and therefore (because each
pair of symbols shows up exactly once) there is a unique cell corresponding to this pair of
symbols.

Therefore, because knowing any two symbols uniquely determines a word, no two words
have two locations in common; therefore, the distance between any two words is at least 3.
Therefore, d(C) for this code is 3. It is made of base-3 words of length 4, and contains 9
words; therefore, it is exactly what we’re looking for in the case that q = 3.

In general, we can do the exact same thing: for any q, if we have two mutually orthogonal
Latin squares A,B of order q, simply list out all of the q2 possible cells, along with the
symbols in each in A and B. This will be a set of q2 codewords, none of which overlap
at more than one place, by the exact same logic as above; therefore, this is a code with
minimum distance 3, and is again exactly what we’re looking for.

Furthermore, note that we can easily undo this process: given a code C of length 4,
distance 3, with q2 words, note that if we look at the first two symbols in the words of
our code, we get every possible pair of symbols. This is because they must all be distinct
(because our code has distance 3, and therefore no pair of symbols overlap,) and there are
q2 many words in total. So, write down these codes in a table. Treat the first two symbols
as the cell location, the third as the symbol in that cell in a q × q Latin square A, and the
fourth as the symbol in that cell in a Latin square B. These two squares are both Latin
and orthogonal, because no two words overlap in more than one place (and failing to be
either Latin or orthogonal would force two words to overlap in two places.)

This settles our question for all values of q where we have a pair of mutually orthogonal
Latin squares of order q: in particular, as we discussed earlier, this works for all values of
q 6= 2, 6. On the HW, you proved that the maximum number of elements in a length 4,
distance 3, 2-ary code was 2; so you’ve resolved that case.

This leaves q = 6. As you may have done in past HW sets, you can find a pair of order
6 Latin squares A,B such that when you superimpose A on top of B, you get 34 of the
possible 36 pairs. If you turn these two Latin squares into length-4 codewords and just
delete the two repeated pair codewords, you are left with 34 different codewords none of
which overlap at more than one place. In other words, you’ve shown that there is a code of
size 34, and we know that one does not exist of size 36 (because that would mean that two
MOLS of order 6 existed, by our earlier proof.)

The only case remaining is to decide whether it’s possible for a 6-ary code of length 4,
distance 3 to exist with 35 elements. As you have either shown on the HW or can show
now, it’s not possible! In particular, having this would be equivalent to having a pair of
Latin squares that gave you 35 of 36 possible pairs when superimposed, which you can show
is impossible. (Do so!)

So: our knowledge of MOLS gave us complete knowledge of how the length-4 distance-3
codes worked! We can easily generalize the arguments we used above to length-n distance-
n− 1 codes, as we describe here:

3



Proposition. Let C be a q-ary length n distance d code. Then C contains less than qn−d+1

many elements.

Proof. Just like before, take any such code C and look at the first n − d + 1 elements
of every word. If any of these are repeated, then the distance between the corresponding
words is at most d− 1, a contradiction. Therefore none of these are repeated, and therefore
there are at most as many codewords as there are such n− d+ 1 strings: i.e. |C| ≤ qn−d+1.

If d = n−1, this is still the claim that any such code contains q2 many elements at best.

Theorem 2 There is a q-ary length n, distance n − 1 code with q2 many elements if and
only if there are n− 2 MOLS of order q.

Proof. Just like before, create a table listing these Latin square elements alongside their
cell locations

location sL1 sL2 . . . sLn−1

(0, 0) L1(0, 0) L2(0, 0) . . . Ln−2(0, 0)
...

...
...

...
...

Turn this table into codewords of length n by just compressing each row into a single
word. By the exact same logic as before, knowing any two pieces of information here
uniquely determines what cell you’re talking about, because of orthogonality and our Latin
properties. Therefore, we know that none of these words overlap at more than one place;
i.e. that our code has distance C. It contains q2 cells by construction, and is therefore the
example we’re looking for.

In particular, we’ve just shown that a q-ary code of length q + 1, distance q code with
q2 elements exists if and only if there are q − 1 MOLS of order q. This is the question for
MOLS we spent a lot of time examining, and found that the answer was yes whenever q
was a prime power, but did not know the answer to otherwise!

This is a good place to end this class; for our last example, we’ve managed to connect
Latin squares simultaneously with fundamental open problems in their own field (what’s
the largest set of MOLS for any given order?), another field in mathematics (what’s the
largest q-ary code of length q+1, distance q?) and things that are practically used in reality
(this method of error-correction via MOLS is literally how your broadband internet works:
you have q-ary codes sent across your cables, and they get corrected for static interference
via MOLS. This is actually how your internet works.) Pretty cool, right?

4


	A Quick Recap of Last Lecture

