
Latin Squares Instructor: Padraic Bartlett

Lecture 4: Latin Squares and Geometry

Week 3 Mathcamp 2012

In this week’s lectures, we’re going to shift our emphasis from the theory of Latin square
to the applications of Latin squares: i.e. now that we understand these things a little, what
can we actually do with them? Specifically, let’s start by looking at how we can use Latin
squares to do some geometry. . .

1 Affine Planes

Definition. An affine plane is a collection of points and lines in space that follow the
following fairly sensical rules:

(A1): Given any two points, there is a unique line joining any two points.

(A2): Given a point P and a line L not containing P , there is a unique line that contains P
and does not intersect L.

(A3): There are four points, no three of which are collinear. (This rule is just to eliminate
the silly case where all of your points are on the same line.)

R2 satisfies these properties, and as such is an affine plane. In this class, we’re going to be
interested in studying finite affine planes: i.e. affine planes with finitely many points. For
example, the following set of four points and six lines defines an affine plane:

The following set of nine points and twelve lines defines another affine plane:
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(All lines in the picture above contain three points. There are four curved tiny-dash lines,
two long-dash diagonal lines, and six bold left-right and up-down lines.)

Finite affine planes satisfy a number of interesting properties. To better understand
how these objects work, we prove a few of these properties here:

Proposition. In any affine plane, there is an integer n such that every line in our plane
contains exactly n points, and every point lies on precisely n + 1 lines. We call this value
the order of our plane.

Proof. There are two possible cases to consider here:

1. Suppose that for any two lines L1, L2 in our plane, we can always find a third point P
such that P does not lie on either of these lines. Then, given any point Q on the line
L1, we can find a line M through Q and P using property A1 of our affine plane. This
line cannot intersect any other elements on L1, because otherwise (if it did, at some
point R) we would not have a unique line defined by the points Q and R (as both L1

and M would contain both of them, while being distinct lines because M contains P
while L1 does not.)

So, every point in L1 is contained within exactly one line through P . Furthermore,
there is exactly one other line that goes through P that intersects no point of L1, by
property A2. So, if |L1| denotes the total number of points contained in the line L1,
we have that |L1|+ 1 many lines go through P .

Similarly, every point in L2 is contained within exactly one line through P , and there
is precisely one other line through P that does not intersect L2. Therefore, if |L2|
denotes the total number of points contained in the line L2, we also have that |L2|+1
many lines go through P .

But these two things are counting the same object: the number of lines through P .
Therefore, these two quantities are equal: i.e. |L1| = |L2|. Therefore, all lines contain
the same number (call it n) of points, and any point is contained by n+ 1 many lines.

2. If we are not in the first case, then there are two lines L1, L2 such that every point
of P is contained within our two lines. We claim that our plane is in fact the affine
plane with four elements that we gave an example of earlier.

To see why: first, notice that by our property A3, we must have two of these points
on L1 and not on L2, and the other two on L2 and not on L1. Call the L1 points
P1, P2 and the L2 points Q1, Q2. Suppose for contradiction that we had a third point
running around. By assumption, it has to lie on either line L1 or L2: without loss of
generality, assume it lies on line L1, and call it P3.

Examine the line M1 formed by the points P1, Q1, M2 formed by the points P2, Q2

and M3 formed by the points P3, Q2. Note that neither M1 nor M2 can be L1 or L2,
by the argument we just made above.

We know that at most one of the line M2, M3 can be parallel to M1; therefore, at
least one of them must intersect M1.

Suppose that M1 and M2 intersect at some point. If it is a point Pi on L1, then the
pair of points P1, Pi defines both of the distinct lines M1 and L1, which contradicts
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our property A1. Instead, if it’s a point Qj on L2, then the pair of points Q1, Qj also
defines both of the distinct lines M1 and L2, which contradicts A1 again.

So we cannot have M1 and M2 intersecting; therefore, we must have M1 and M3

intersect. But this creates the same set of problems — no matter how they intersect,
we’ll get a pair of points that define two distinct lines!

Therefore, we must have that L1 and L2 must contain exactly two points, as must
all other lines; consequently, we have that there are four points in total in our plane.
Because any two of them uniquely define a line, we have

(
4
2

)
= 6 many edges in total,(

3
1

)
= 3 of which pass through any point. This is in particular the affine plane we

drew earlier with four points and six edges, which we call the affine plane of order 2.

Proposition. Any finite affine plane of order n contains n2 many points.

Proof. By our earlier property, every point P is on n+1 many lines, each of which contains
n− 1 points distinct from P . By properties A1 and A2, there is exactly one line connecting
any other point in the plane to P .

By combining these two results together, we can see that there are

(n + 1)(n− 1) + 1 = n2

many points in the plane, by simply using these n + 1 lines to count all of the points other
than P in the plane.

For our last property, the definition of a parallel class will be useful:

Definition. A parallel class in an affine plane is a collection of lines that are all parallel:
i.e. such that no two of them intersect.

Proposition. Take any finite affine plane of order n. Then there are exactly n2 + n lines
in this plane, which can be partitioned into n + 1 distinct parallel classes, each of which
contains n lines.

Proof. Pick any point P and any line L passing through P . Let M be any other line
passing through P ; then, for each of the n− 1 non-P elements in M , there is a parallel line
passing through that element parallel to L. By taking these n parallel lines along with the
line L, this creates a parallel class with n many elements in it.

Do this for every line passing through P : this creates n + 1 different parallel classes.
Every line M shows up in exactly one parallel class, as (by A2) there is a unique line through
P parallel to M , and that line determines which of the n + 1 different parallel classes M is
in. Therefore, this process counts each of our lines exactly once, and gives us n2 + n many
lines in total.
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Given the ease with which we were able to punch through the above properties, it seems
like affine planes are things we should be able to understand; i.e. simple questions like when
they exist and how to construct them easily should be well-understood. This, however, is
completely false! As it turns out, we only know how to construct these objects for orders
n where n is a prime power: i.e. a number of the form pk, for some prime p and positive
integer k.

This is surprising; at the same time, it should remind you of our results for sets of
MOLS, for which we only knew how to construct sets of n − 1 MOLS for prime power
orders. Far more surprisingly, it turns out that these two questions are equivalent! In other
words, a set of n− 1 MOLS of order n is surprisingly the same thing as a finite affine plane
of order n. We prove this here:

Theorem 1 A finite affine plane of order n exists if and only if a set of n − 1 MOLS of
order n exist.

Proof. We first describe how to turn a set of MOLS into an affine plane. To do this, use
the following construction: for points, take all of the pairs (i, j), where 1 ≤ i, j ≤ n. For
lines, we list the lines of our affine plane in groups of n, corresponding to the n+ 1 parallel
classes we showed must exist earlier:

• Given any i, all of the cells in row i form a line. The collection of these n lines is a
parallel class.

• Given any j, all of the cells in row j form a line. The collection of these n lines forms
another parallel class.

• Take any Latin square Lα of our n− 1 MOLS. Given any symbol s, let all of the cells
containing the symbol s in Lα be a line. The collection of all of these n lines, one for
each symbol, forms a parallel class. We get n − 1 such parallel classes, one for each
Latin square in our set.

Because our squares are mutually orthogonal, none of these lines overlap. Therefore, given
any point (i, j), we’ve actually just shown that it lies on n + 1 lines, each of which contain
n− 1 other points: therefore, the collection of all of these lines collectively contains

(n + 1)(n− 1) + 1 = n2

many points. In other words, (i, j) is connected to every other cell in our Latin square by
some line; therefore, we satisfy A1.

To see that we satisfy A2, take any line M and any other point (i, j) not on M . If M
is a row, take the row i; this line is parallel to M , and is furthermore unique in doing so
(as every column and every set of cells underlying a symbol in some Lα must eventually
contain the row i.) Similarly, if M is a column, take the column j; this is also the unique
line parallel to M through (i, j). Finally, if M is a set of symbols underlying some symbol
s in the Latin square Lα, take the set of symbols underlying whatever symbol is in (i, j) in
Lα.

This is parallel to M by construction, and is furthermore unique in doing so: given any
other line N containing (i, j), N must either be a row or column (and therefore intersect
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M) or must come from some other symbol t and other Latin square Lβ, in which case it
must intersect M (specifically, at whatever cell the overlap of Lα and Lβ contains the pair
(s, t). Such a cell must exist, because Lα and Lβ are mutually orthogonal, and therefore
every such pair comes up exactly once.)

Therefore, we satisfy A2. As long as we started with at least 1 MOLS of at least order
2, this has created at least 6 lines (at least 2 for rows, 2 for columns, and 2 for parallel
classes) each with at least 2 points, we satisfy A3; so we satisfy A3, and are therefore an
affine plane!

The reverse process is completely the same, but backwards. Specifically, given an affine
plane of order n, split it up into n + 1 parallel classes C0, . . . Cn each with n elements.
Number the elements in each class Ci 1 through n.

Unilaterally declare the parallel class C0 to correspond to the rows of our Latin squares,
and the parallel class Cn to correspond to the columns of our Latin square. To each of the
coordinates (i, j), assign the unique point given by the intersection of the i-th line in the
parallel class C0 and the j-th line in the parallel class Cn. This creates a bijection between
points in our affine space and cells (i, j).

Given any number k between 1 and n− 1, we fill the Latin square Lk as follows: place
the symbol s in the cell (i, j) if the line s of class Ck contains the point we identified with
(i, j) earlier. Because every point is contained in some line of Ck (n disjoint lines each with
n points), this fills every cell. As well, this preserves our Latin property, because any line
from our class Ck shows up in any row (i.e. intersects any line from C0) or any column (i.e.
intersects any line from Cn) exactly once, by property A2.

This creates n−1 Latin squares. Furthermore, given any two such Latin squares Lα, Lβ,
and any two lines s ∈ Cα, t ∈ Cβ, we know that s and t intersect at exactly one point: i.e.
there is exactly one cell in our square where Lα is s and Lβ is t. In other words, every pair
of symbols shows up exactly once: i.e. these squares are mutually orthogonal!

We draw this process here, for the case where n is 3:
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