Latin Squares	Instructor: Padraic Bartlett
Homework 9: Error-Correcting Codes and Latin Squares	
Week 3	Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(+)$ problems are harder than the others. $(++)$ problems are currently open.

1. Using MOLS, create a 4 -ary length 5 code with distance 4 , containing 16 elements.
2. A q-ary length n code C is called linear if the sum of any two codewords, thought of as elements in $(\mathbb{Z} / q \mathbb{Z})^{n}$. Find a linear code. Are any of the MOLS codes we've came up with linear? Are any not linear?
3. A q-ary length n code C is called perfect if there is some integer t such that for any element $\mathbf{x} \in(\mathbb{Z} / q \mathbb{Z})^{n}$, there is a unique word in C within Hamming distance t of \mathbf{x}. Consider the three codes (repeat three, the second code we studied on day 1 , the MOLS code made out of 3×3 squares) we've studied in depth. Are any of them perfect? Can you find a perfect code? Can you find a code that is not perfect?
