Latin Squares	Instructor: Padraic Bartlett
Homework 8: Error-Correcting Codes and Latin Squares	
Week 3	Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(+)$ problems are harder than the others. $(++)$ problems are currently open.

1. Find a code with infomation density 1 .
2. What is the minimum distance of the code formed by taking all words in English as your codewords?
3. Historically, one of the first codes developed was the Hamming [7, 4] code. It works like this: take any string of four bits (i.e. any string of four 0's and 1's.) Turn this into a string of seven bits in the following way:

- Place the bits of the original message, in order, in the slots $3,5,6,7$.
- In slot 1 , put the parity of the sum of the bits in slots $3,5,7$.
- In slot 2 , put the parity of the sum of the bits in slots $3,6,7$.
- In slot 4 , put the parity of the sum of the bits in slots $5,6,7$.

For example, to encode the message 1010, we would first place
--1_010;
then, because $1+0+0=1,1+1+0=0,0+1+0=1$, we would fill in the remaining slots to get

$$
1011010 .
$$

This is a 2-ary code of length 7. Find its information density and its minimum distance.
4. Show that the maximum number of elements in a 2 -ary code C of length 4 and distance 3 is 2 .
5. Create a 4 -ary code of length 4 and distance 3 , that contains 16 elements.

