Latin Squares	Instructor: Padraic Bartlett
	Homework 2: Partial Latin Squares, continued
Week 2	Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos! $(+)$ problems are harder than the others. $(++)$ problems are currently open.

1. Is the following partial Latin square P always completeable to a proper Latin square? (Assume that P is of order ≥ 3.)

$$
\left[\begin{array}{ccccc}
1 & - & - & \ldots & - \\
- & 2 & - & \ldots & - \\
- & - & 3 & \ldots & - \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
- & - & - & \ldots & n
\end{array}\right]
$$

2. Another way to interpret a (partial) Latin square L as a graph is the following construction:

- Start with a set of $3 n$ vertices. Label n of them $r_{1}, \ldots r_{n}$, and think of these elements as corresponding to the rows of L; take n more different vertices, label them $c_{1} \ldots c_{n}$, and think of them as corresponding to the columns, and take the last n, label them $s_{1} \ldots s_{n}$, and think of these as corresponding to the symbols.
- Every time the symbol k occurs in cell (i, j), draw a triangle connecting r_{i}, c_{j}, and s_{k}.
- This creates a tripartite ${ }^{1}$ graph. Furthermore, it does this in a way that subdivides our graph up into a bunch of edge-disjoint triangle subgraphs!

Take the following partial Latin square P and turn it into a tripartite graph:

$$
P=\left[\begin{array}{ccc}
- & 2 & 3 \\
2 & 1 & - \\
3 & - & 1
\end{array}\right]
$$

Draw the tripartite complement of this graph: i.e. the tripartite graph formed by connecting r_{i} to s_{j}, or s_{j} to c_{k}, or c_{k} to r_{i}, if and only if we did not connect them with an edge in our earlier construction. What kind of graph is this? How is this related to the question of completing P to a Latin square? (I.e. just by looking at this graph, can you explain why P cannot be completed to a proper Latin square?)
3. Yesterday, I asked you for the smallest number of cells that you could place in a 4×4 partial Latin square, so that it has a unique solution. Today, do the opposite: find the largest number of cells you can place in a 4×4 partial Latin square, so that it cannot be completed to a proper Latin square. Does your construction generalize to $n \times n$ Latin squares?

[^0]4. $(+)$ Let P be a partial Latin square that satisfies the following property: there is a set of r rows and c columns such that a cell in P is filled if and only if it lies within the intersection of these rows and columns. Then P is completeable if and only if $N(i) \geq r+c-n$, where $N(i)$ denotes the number of symbols in P equal to i.
5. An slightly easier version of the above question: show that if P is a $n \times n$ partial Latin square, n even, where the upper-quadrant $\frac{n}{2} \times \frac{n}{2}$ is filled and the rest is blank, then P can be completed to a Latin square.

[^0]: ${ }^{1} \mathrm{~A}$ tripartite graph is one in which the vertex set can be split into three parts V_{1}, V_{2}, V_{3}, such that there are no edges that start and end in the same V_{i}. Like bipartite, but with three parts!

