
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 5: Applications! (I.e.: The Google, How Does It Work.)

Week 4 Mathcamp 2011

Last lecture! In our first week of spectral graph theory, we focused on studying just
what the spectra told us about a graph, and found a series of spectral answers to the
kinds of questions (what can we bound the chromatic number by, how does the spectrum
relate to the degree, how can we tell whether a graph is bipartite) we typically ask in
an introduction to graph theory course. From there, we moved to using spectral graph
theory as a tool to answer graph-theoretic questions in their own right: in the span of a
few days, we came up with a beautiful formula for the number of spanning trees in any
graph, and used the Lagrangian to show that many graph decompositions are impossible
(K10 into three Petersen graphs, Kn into n−2 bipartite graphs) and some graph structures
are inevitable (Kr is inescapable if you have ≥ r−2

r−1n
2-many edges.) From there, we moved

to more impressive results: via the integrality conditions on strongly regular graphs, we
managed to prove the Friendship Theorem, and show that there are at most five graphs
that are “like” the Petersen graph (with the existence of the fifth still an open question!)

Today, I want to sketch briefly how non-mathematicians use the tools in spectral graph
theory to attack “real-world” problems. Graphs come up everywhere, and analyzing them
is hardly a task reserved only for graph theorists; in this lecture, we’ll examine how spectral
graph theory can tell us which fullerenes seem to be theoretically constructible and which
aren’t, and how the Google Page Rank algorithm works.

1 Fullerenes!

In graph theory, a fullerene1 is a 3-regular planar graph in which all of its faces are 5- or
6-cycles, including the “outer” face2. Observant or chemically-trained readers will recognize
this name from chemistry, where a fullerene is any carbon molecule that forms a sphere or
ellipsoid; the connection here arises from the observation that spheres of carbon can pretty
much only be made when the carbons are joined in cycles of 5 or 6.

A question that both graph theorists and chemists are fairly interested in is the following:
what kinds of properties do fullerenes have? What kinds of graphs can be fullerenes? Which
graph-theoretic fullerenes are also viable molecules in reality?

Surprisingly, we can answer a lot of these questions! We’ll defer a number of proofs, as
they involve some linear algebra we haven’t had the chance to develop yet; but the feel for
the material should hopefully be conveyed. Unless explicitly stated, a fullerene will be a
graph-theoretic fullerene for the purposes of our discussion.

Proposition 1 Any fullerene has precisely 12 5-cycles.

1In popular science fiction, a fullerene is a plot device that basically allows you to do whatever you
want. See also: wormholes, quantum mechanics, hot cups of tea.

2In this sense, we are considering our planar graph as a graph we can embed on the sphere without
crossings, in which every face is a C5 or C6.

1



Proof. Take any fullerene with V vertices, E edges, and F faces, and recall what the Euler
characteristic says about any graph embedded on a sphere:

V − E + F = 2.

We know that our graph is 3-regular; therefore, we have 3V = 2E via the degree-sum
formula. Combining this with the Euler characteristic, we have that F5 + F6 = F =
2 − V + E = 2 + 1

2V Furthermore, because every edge lies in precisely two faces, we have
that 5F5 + 6F6 = 2E = 3V . Subtracting 6 copies of the first equation from the second
yields −F5 = −12, i.e. F5 = 12, our claim.

Notice that as a quick consequence we can relate the number of 6-cycles and vertices
via n = 2f6 + 20, as well.

In chemistry, it seems that not every fullerene is realizable. In particular, one rule that
chemists have noticed that all fullerenes obey is that they never have two adjacent
pentagonal faces: this is probably because the pentagon is not a shape that carbons are
terribly happy in, and the stress of having any carbon in two such faces probably makes
any such molecule unstable.

Therefore, it seems likely that any viable fullerene will have to have all of its pentagonal
faces isolated. By the proposition above, it must have at least 60 vertices, as it has precisely
12 such faces. Does such a fullerene exist?

The face-meltingly awesome answer lies below:

As an added bonus, this one actually exists in reality! It’s called buckminsterfullerene,
after Richard Buckminster Fuller, who is an awesome person you should read about on
Wikipedia.

2



Heartened by our success, we might ask the following: can we make more? Specifically,
if we find other such fullerenes that satisfy this property, will they too exist in nature?
Frustratingly, this seems to not be true: there are many fullerenes that do not have adjacent
pentagons that still don’t seem to exist.

One necessary condition chemists have noticed about fullerenes that seem to exist (and
a lot of molecules in general) is that their adjacency matrices seem to need to have as many
positive eigenvalues as they have negative eigenvalues: this seems to be the consequence of
some sort of need for a “balancing” condition, where having too many eigenvectors in either
direction makes the molecule unstable. This winds up disqualifying tons of potential other
fullerenes.

At this point, we might despair; as we’ve seen in this class thus far, finding eigenvalues
is a tricky bit of business to do, and doing so on an ad-hoc basis seems difficult, especially
for graphs that are all on ≥ 60 vertices! However, consider the following beautiful process:

Definition. Given a 3-regular planar graph G with v vertices, e edges, and f faces we
define the leapfrog graph F (G) of G as follows:

1. Start with G.

2. Turn G into its line graph L(G), which is formed by taking G’s edge set as its vertices
and connecting two edges iff they are incident in G. This turns G into a 4-regular
planar graph, as can be seen in the example drawn below, with m vertices and n+ f
edges.

3. Now, take this graph and split each vertex of L(G) into a pair of adjacent vertices in
such a way that every triangular face of L(G) is now a hexagon. This then gives us a
3-regular planar graph with 2m vertices, n faces of length 6, and the same number of
non-hexagonal faces as the original graph: i.e. if we put in a fullerene, we’ll get out a
fullerene!

We don’t quite have the linear algebraic tools to prove it here, but (as it turns out)
these leapfrog graphs *always* turn out to have this stability property (that they have as
many positive eigenvalues as negative eigenvalues!) We state the proposition here; find me
in TAU if you want more information about the techniques needed3 to prove this result:

Proposition 2 If X is a fullerene graph, then F (X) is a a fullerene with as many negative
eigenvalues as positive eigenvalues.

2 The Google

Perhaps one of the most well-known applications of spectral graph theory is Google’s PageR-
ank algorithm. Basically, before Google came along, web search engines were atrocious4;

3Particularly interested students are invited to first learn about the process of interlacing, which is
described nicely in Brouwer/Hamer’s online notes on spectral graph theory, and then to find Godsil/Royle’s
book on algebraic graph theory, where this is carefully proved.

4Please, please tell me that some of you remember a world before Google was known? Really?
AAAAAAAA I AM OLD

3



search results were basically massive keyword-bashes plus some well-meaning but dumb
attempts to improve these results by hand. Then Brin and Page came onto the scene, with
the following simple idea:

Important websites are the websites other important websites link to.

This seems awfully circular, so let’s try framing this in more of a graph-theoretic frame-
work: Take the internet. Think of it as a collection of edges5 connecting n webpages
together: the various webpages are vertices, and there are edges pointing out of each web-
site to each page that site links to. In this sense, if we have some quantity of “importance”
rank(vi) that we’re associating to each webpage i, we want it to obey the following relation:

rank(vi) =
∑

vj∈N−(vi)

rank(vj)

deg(vj)
.

Hmm. Still circular. But more promising! In particular, if we don’t think of each ranking
individually, but rather take them all together as some large rank vector r, we have that
rk =

∑n
i=1 aji

ri
deg(vi)

: in other words,

r = AT
G ·D−1deg+

r,

where D−1
deg+

has the reciprocals of the out-degrees of the vertices on its diagonal. But what

does this mean that r is? Just r an eigenvector for the eigenvalue 1 of the matrix AT
G ·D

−1
deg!

Ok, that’s slick. There are some issues with this, however: in the event that any vertex
has 0-out degree, the inverse of the diagonal matrix will (um) not exist. Also, we would
kind of like our ranking to be a well-defined thing: if there were twelve distinct notions of
ranking, for example, we often might not be able to tell which ranking was more relevant
to us at any point in time. For general matrices, this isn’t the case: if we look at K2

∐
K2,

the disjoint union of 2 K2’s, we get the adjacency matrix

AG =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



⇒ AG ·D−1deg+
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



which has both (1, 1, 0, 0) and (0, 0, 1, 1) as eigenvectors for 1.
So: how can we fix this? Well: one idea is to rethink the above process slightly. What

we’re trying to model here is an idea of importance for websites: i.e. if we’re on the
internet and wandering through webpages, we should in theory be clicking on links with the

5A “series of tubes,” if you will.

4



probabilities given to us by the rank(vi)/ deg(vi)’s. In other words, the matrix AT
G ·D

−1
deg+

is a probability matrix: if we multiply it on the right by any vector whose coördinates
sum to 1 (i.e. a distribution of likely places we might be) it will output a vector whose
coördinates sum to 1, which corresponds to where we’re likely to be after clicking on a
random page with the probabilities given by the rank(vi)/ deg(vi)’s.

But is this really how we surf the internet? Not really: at any point in time, we’ve
got some random chance of flying off to YouTube or Metafilter or something else. So: why
don’t we build that in? In other words, instead of looking at AT

G ·D
−1
deg+

, why not look at

α

n
· J + (1− α) ·AT

G ·D−1deg+
,

where α is some small constant that measures the likelihood of us flying off to any other
webpage at random6. If α is not very big and the internet has a lot of pages, this shouldn’t
change our rankings; basically, what we’ve done here is add very low-probability edges
between all of the edges in our graph.

Yet, such a small change turns out to give us exactly what we want! Specifically, we
have the following in linear algebra:

Theorem 3 (Perron-Frobenius) If A is a probability matrix – i.e. the sum of the entries
in every column of A is 1 – and every entry in A is positive, then AG’s largest eigenvalue
is 1, and furthermore the eigenspace corresponding to this eigenvalue has dimension 1. In
other words, for any such probability matrix, there is a unique corresponding ranking vector.

In practice, we usually don’t want to find this eigenvector explicitly, as the internet
is kind of a big thing. Instead, we use the following other property of such “positive”
probability matrices:

Theorem 4 (Perron-Frobenius) If A is a probability matrix with all entries > 0 and x
is any probability vector (i.e. any vector with nonnegative coördinates that sum to 1), then
Anx converges to A’s ranking vector (i.e. the eigenvector for eigenvalue 1 whose coördinates
sum to 1).

So, if we want to find a ranking vector, it suffies to just run the above process a few
times to get something that’s “close enough” for alll practical intents and purposes (where
our choice of α determines just how fast this convergence is, as smaller α-choices make our
graph feel more “disconnected” and thus intuitively should make our convergence process
take longer.)

6In practice, α = 15% seems to be a pretty good constant for calculating this ranking vector quickly.

5


	Fullerenes!
	The Google

