
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic!

Week 4 Mathcamp 2011

We did a ton of things yesterday! Here’s a quick recap:

1. If G is a (n, k, λ, µ) strongly regular graph, then

k(k − λ− 1) = µ(n− k − 1).

2. If G is a strongly regular graph, then AG has at most three eigenvalues. Explicitly,
these three eigenvalues are

k,
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

2
,

with multiplicities

1,
1

2

(
n− 1± (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)
.

3. As a very specific corollary of the above, these multiplicities are integers. This
means that either the two non-k eigenvalues of AG occur with the same multiplicity
(i.e. (n− 1)(µ− λ)− 2k = 0,) or the eigenvalues themselves are all integers.

4. In the case where these eigenvalues occur with the same multiplicity, our graph is of
the form (4t+ 1, 2t, t− 1, t).

5. Specifically: if we’re looking for a SRG of the form (n, k, 0, 1), it either has to have
integral eigenvalues or is a (5, 2, 0, 1) – i.e. a pentagon.

Our goal yesterday was to find all of the graphs that were Petersen-like: that’s why we
started studying strongly regular graphs, and that’s why we proved the statements above.
How can we use these observations to find the others?

1 Finding All Of The SRGs

So: as discussed above, we can assume that the eigenvalues r, s of our strongly regular
graph’s adjacency matrix are integral (as otherwise we’re looking at a pentagon.) What
else can we conclude?

Well: if we use the relation

k(k − λ− 1) = µ(n− k − 1)

we derived earlier, and plug in λ = 0, µ = 1, we get

n = k2 + 1.
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That’s something. What else can we get? Well: if r, s are integers, then in specific the
denominator √

(λ− µ)2 + 4(k − µ)

must also be an integer. In specific, because λ = 0, µ = 1, this means that

√
4k − 3

is an integer: i.e. that 4k − 3 is a square of some integer! Denote this square as s, and by
solving for k write k = 1

4(s2 + 3). Then, if you plug first our formula n = k2 + 1 and then
this formula k = 1

4(s2 + 3) into the formula for one of our multiplicities (say the one for r),
we get

a =
1

2

(
n− 1 +

(n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

)

=
1

2

(
(k2 + 1)− 1 +

(k2 + 1− 1)(1)− 2k√
4k − 3

)
=

1

2

(
1

16
(s2 + 3)2 +

1
16(s2 + 3)2 − 1

2(s2 + 3)

s

)
⇒ 32a · s = s(s2 + 3)2 + (s2 + 3)2 − 8(s2 + 3)

= s5 + s4 + 6s3 − 2s2 + 9s− 15

⇒ 15 = s5 + s4 + 6s3 − 2s2 + (9− 32a)s

= s
(
s4 + s3 + 6s2 − 2s+ (9− 32a)

)
.

Because all of the quantities on the right-hand-side above are integers, we must have that s
divides 15: i.e. s can be one of 1, 3, 5, or 15, which forces k to be one of 1, 3, 7, 57. Plugging in,
using our identity n = k2 + 1, and remembering the pentagon which we already considered,
we can see that any possible (n, k, 0, 1) graph must have one of the following five parameter
sets:

(2, 1, 0, 1), (5, 2, 0, 1), (10, 3, 0, 1), (50, 7, 0, 1), (3250, 57, 0, 1).

The first is just K2; the second is C5, a pentagon; and the third is the Petersen graph. How
about the fourth?
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2 A Really Pretty Picture

This graph is the Hoffman-Singleton graph1, and is formed as follows: Take five stars
P0, . . . P4 and five pentagons Q0, . . . Q4. Enumerate the vertices of each pentagon and star
in counterclockwise order as 0, 1, 2, 3, 4, and for every i, j, k connect the vertex i in Pj to
the vertex i+ jk in Qk.

It is also absolutely gorgeous.

1Roughly speaking, it’s a bunch of Petersen graphs inside of Petersen graphs. Depending on which meme
you prefer, you can caption this as either “Peteception” or “Yo dawg, I heard you like the Petersen graph so I
put a Petersen graph in your Petersen graph so you can disprove conjectures while you disprove conjectures.”
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You know what’s also amazing – dare I say it, magical?

3 Friendship is Magic!

So magical, that we even have a theorem about it (whose name I swear I have not made
up, this is what it is in the literature:)

Theorem 1 (Friendship Theorem) Suppose you have a gathering of people wherein every
two people have exactly one friend in common. Then there is someone at this gathering who
is friends with everyone.

In the language of graph theory, we’re saying that any graph where every two vertices have
exactly one common neighbor is a collection of k triangles joined along a common vertex:

We call such a graph a friendship graph.
How can we prove our theorem? With our earlier tools about strongly regular graphs!

Proof. Specifically: let G be any such friendship graph. If G is regular, then it is strongly
regular (as any two adjacent or nonadjacent vertices have exactly one neighbor in common)
with parameter set (n, k, 1, 1). For what values of k do our integrality conditions say that
these are possible?

We know that

1

2

(
n− 1 +

(n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

)
=

1

2

(
n− 1− 2k√

4k − 4

)
=

1

2

(
n− 1− 2k√

4k − 4

)
=

1

2

(
n− 1− k√

k − 1

)

must be an integer: i.e. that k/
√
k − 1 is an integer. But (via the quadratic formula and

some algebra,) we know that this can only happen when k = 2, in which case our graph is
a triangle.

Therefore, in any case where we have more than three people, our graph is not regular.
In an attempt to find out just what we do know about our graph, we start writing down
observations about what we’re seeing:
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• Because of the unique common neighbor feature of our graph, we don’t have any
4-cycles.

• Conversely, given any pair of adjacent vertices i, j, let k be their common neighbor.
This forms a triangle: therefore, every vertex has degree at least 2, as every vertex is
part of at least one edge.

• Now, take any pair of nonadjacent vertices i, j (these exist because our graph is not
regular, and therefore in particular not the complete graph.) Let k be the common
neighbor of i and j, m1 be the common neighbor of j, k and n1 the common neighbor
of i, k.

For every vertex x ∈ N(i), x 6= k, n1, look at the unique common neighbor f(x) that
j and x share.

If there are two distinct values x1, x2 for which f(x1) = f(x2), then the 4-tuple
x1, j, x2, f(x1) is a 4-cycle, a contradiction: therefore, all of the values of f(x) are
distinct and involve edges from these distinct values to j! Using symmetry, we can
reverse this argument to show that the same thing holds for N(j); this tells us us that
we have |N(i)| = |N(j)|. In particular, whenever two vertices are not connected, they
must have the same degree.

• Our graph is not regular: therefore, there must be at least three vertices i, j, k such
that one of these three vertices has degree different than the other two. Let k be this
vertex without any loss of generality.

We claim that k is in fact connected to every vertex. To see this, suppose not: i.e.
take any other vertex x that’s not connected to k. Then deg(x) = deg(k), and in
particular this means that x also must have an edge to i and j: i.e. we have a 4-cycle,
which is impossible. Therefore, k is in fact connected to everything, and we’ve proven
our claim!
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