Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 2: Spectral Theory and Decomposition Problems, part 2/2

Week 4

In our last lecture, we introduced the Lagrangian, a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as follows:

$$
f_{G}(\mathbf{v})=\left\langle A_{G} \mathbf{v}, \mathbf{v}\right\rangle=\left(A_{G} \mathbf{v}\right)^{T} \cdot \mathbf{v}=\sum_{\{i, j\} \in E(G)} 2 v_{i} v_{j} .
$$

We introduced this function because we wanted something that would allow us to distinguish between graphs that have "many" positive eigenvalues and graphs that have "many" negative eigenvalues. This function did this, in the following sense:

Proposition 1 The Lagrangian function f_{G} is (positive-semidefinite/positive-definite/negative-semidefinite/negative-definite) on the space generated by all of the eigenvectors corresponding to (nonnegative/positive/nonpositive/negative, respectively) eigenvalues.

To illustrate the usefulness of this tool, here's an application:
Theorem 2 The complete graph K_{n} cannot be decomposed into $\leq n-2$ complete bipartite graphs.

Proof. First, notice that (given the intuition we've developed earlier) we would expect this to be a problem: on one hand, we have $\operatorname{Spec}\left(K_{n}\right)=\left\{(n-1)^{1},(-1)^{n-1}\right\}$, which has a lot of negative eigenvalues, while $\operatorname{Spec}\left(K_{m, n}\right)=\left\{ \pm \sqrt{m n}, 0^{n-2}\right\}$ has a lot of nonnegative eigenvalues.

But how does our tool tell us this? In other words, suppose that we had some such decomposition of K_{n} into $n-2$ complete bipartite graphs $G_{1}, \ldots G_{n-2}$; to make our lives easier, add vertices to each of these G_{i} 's so that they're all on n vertices. Because adding an unconnected vertex to a graph changes the spectrum by adding a 0 -eigenvalue, these graphs all have spectrum $\left\{ \pm a b, 0^{n-2}\right\}$.

So: how can we use the Lagrangian? Well, one nice observation we can make about the Lagrangian is that it distributes across graph decompositions: i.e. because $A_{K_{n}}=$ $A_{G_{1}}+\ldots A_{G_{n-2}}$, we have

$$
f_{K_{n}}=\sum_{i=1}^{n-2} f_{G_{i}} .
$$

How can we use this? Well, notice that each $A_{G_{i}}$ has a n-1-dimensional space corresponding to its nonnegative eigenvectors - call it U_{i}, say. Then, because we have $n-2$ of these spaces, the intersection of all of these spaces is at least dimension 2. But this means that there is a 2 -dimensional space on which the function $\sum_{i=1}^{n-2} f_{G_{i}}$ is positive semidefinite.

However: this is actually $f_{K_{n}}$ in disguise! And $f_{K_{n}}$ is negative-definite on a space of dimension $n-1$; i.e. there's only one dimension of space in which $f_{K_{n}}$ doesn't take on negative values! So this is clearly a contradiction.

Excellent! The Lagrangian works! Win.
... what else can we do with it?

1 Finding Structure in Graphs

In the above argument, we used the Lagrangian to find problems with given graph decompositions. Can we reverse this kind of argument - i.e. can we use the Lagrangian to show that graphs with certain properties must contain certain kinds of subgraphs?

It turns out that the answer is yes! Specifically, we can use the Lagrangian to pick out the clique number of a graph, in the following way: let

$$
f(G)=\max _{\mathbf{s} \in S} f_{G}(\mathbf{s}),
$$

where $S=\left\{\mathbf{s}: \sum_{i=1}^{n} s_{i}=1, s_{i} \geq 0\right\}$. In a certain sense, then, $f(G)$ is picking out the pockets of "density" in our graph G : i.e. if you think of \mathbf{s} as a weighting of the vertices on our graph, the maximal value of $f_{G}(\mathbf{s})$ is attained where \mathbf{s} is concentrated on the vertices with "lots" of edges.

We make this rigorous with the following two observations:
Proposition $3 f\left(K_{n}\right)=(n-1) / n$.
Proof. Simply note that

$$
\begin{aligned}
f(G) & =\max _{\mathbf{s} \in S} f_{G}(\mathbf{s}) \\
& =\max _{\mathbf{s} \in S} \sum_{\{i, j\} \in E} 2 a_{i j} s_{i} s_{j} \\
& =\max _{\mathbf{s} \in S} \sum_{i=1}^{n} \sum_{j \neq i} s_{i} s_{j} \\
& =\max _{\mathbf{s} \in S} \sum_{i=1}^{n} s_{i} \sum_{j \neq i} s_{j} \\
& =\max _{\mathbf{s} \in S} \sum_{i=1}^{n} s_{i}\left(1-s_{i}\right) \\
& =\max _{\mathbf{s} \in S}\left(\sum_{i=1}^{n} s_{i}\right)-\left(\sum_{i=1}^{n} s_{i}^{2}\right) \\
& =\max _{\mathbf{s} \in S} 1-\left(\sum_{i=1}^{n} s_{i}^{2}\right),
\end{aligned}
$$

which is maximized by the point in S closest to the origin: i.e. $(1 / n, 1 / n, \ldots 1 / n)$. At this point, we have $f_{G}(1 / n, \ldots, 1 / n)=(n-1) / n$, as claimed.

Proposition 4 Let G be a graph with clique number k. Then $f(G)=(k-1) / k$.
Proof. Let S^{\prime} be the collection of points $\mathbf{s} \in S$ where f_{G} attains its maximum, and amongst these points let \mathbf{y} be a point in this collection with the smallest support: i.e. one with the most coördinates equal to 0 in our collection.

As it turns out, if you do this and look at the coördinates of \mathbf{y} that aren't zero, you get a complete graph! To see why, suppose not: i.e. that you have two coördinates y_{1}, y_{2} with

- $y_{1}, y_{2}>0$, and
- $\left\{y_{1}, y_{2}\right\} \notin E(G)$.

Let

$$
y_{1} \sum_{j=1}^{n} 2 a_{1 j} y_{j}
$$

be the portion of $f_{G}(\mathbf{y})$ that depends on y_{1}, and

$$
y_{2} \sum_{j=1}^{n} 2 a_{2 j} y_{j}
$$

be the portion of $f_{G}(\mathbf{y})$ that depends on y_{2}. One of the two sums $\sum_{j=1}^{n} 2 a_{1 j} y_{j}, \sum_{j=1}^{n} 2 a_{2 j} y_{j}$ has to be larger (or equal); assume it's the first, without any loss of generality. Then, because there isn't an edge between y_{1} and y_{2}, we have that the two inequalities

$$
\begin{aligned}
& y_{2} \sum_{j=1}^{n} 2 a_{2 j} y_{j} \leq y_{2} \sum_{j=1}^{n} 2 a_{1 j} y_{j}, \\
& y_{1} \sum_{j=1}^{n} 2 a_{1 j} y_{j}=y_{1} \sum_{j \neq 2} 2 a_{1 j} y_{j}
\end{aligned}
$$

hold, which forces

$$
\Rightarrow \quad y_{1} \sum_{j=1}^{n} 2 a_{1 j} y_{j}+y_{2} \sum_{j=1}^{n} 2 a_{2 j} y_{j} \leq\left(y_{1}+y_{2}\right) \sum_{j=1}^{n} 2 a_{1 j} y_{j}
$$

and thus that $f_{G}(\mathbf{y}) \leq f_{G}\left(y_{1}+y_{2}, 0, y_{3}, \ldots y_{n}\right)$. This element is also in S and has one more zero-coördinate than \mathbf{y} did: a contradiction to \mathbf{y} 's minimality! So we've proven our claim.

So: we've used the Lagrangian to not just show that certain decompositions are impossible, but also that certain graphs must have various structures - i.e. $f(G)$ is completely determined by the clique number! This allows us to prove the following result with almost no effort at all:

Theorem 5 Suppose that r is a constant and G is a graph with n vertices and m edges, with $m>\frac{r-1}{2 r} n^{2}$. Then G contains K_{r} as a subgraph.

Proof. If you plug in $(1 / n, \ldots 1 / n)$ into f_{G}, you get

$$
\frac{2 m}{n^{2}} \geq \frac{r-1}{r}
$$

But, on the other hand, you know that

$$
(\omega(G)-1) /(\omega(G))=f(G) \geq f_{G}(1 / n, \ldots 1 / n)
$$

and thus that $\omega(G) \geq r$.
Proving this theorem without linear algebraic machinery is a lot of extra work; here, we get it for essentially free!

