
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 1: Spectral Theory and Decomposition Problems, day 1/2

Week 4 Mathcamp 2011

Welcome to week 2! Last week was all about building intuition and techinques within
the world of spectral graph theory: specifically, in the span of a week, we introduced the
ideas of the adjacency and Laplacian matrices, re-examined many of the basic questions
of an intro to graph theory course (i.e. bounds on the chromatic number, characterizing
bipartite graphs, counting trees,) and hopefully saw just how much more firepower the
language of linear algebra offers us in attacking graph-theoretic questions.

This week, we’re going to switch to a much more applied and graph-theory-centric
approach. Instead of last week, where our theorems and proofs explicitly related graphs to
their spectra, this week’s classes will pose questions that (on their face) have nothing to do
with spectral graph theory, but yet can often only be answered using these tools!

Specifically, in the next two lectures we’re going to talk about some results in graph
structures and decompositions, concepts we define in the next section:

1 Motivation/Definitions

Definition. Given a graph G, a graph decomposition H is a collection {H1, . . . Hn} of
subgraphs of G, such that every edge of G lies in at least one Hi and no edge lies in more
than 1 Hi. For example, the following picture is a decomposition of the drawn graph G into
9 triangles H1, . . . H9:

If all of the Hi’s are isomorphic to some graph H, we will call such a decomposition a
H-decomposition of G. As a quick example, take the above picture: the right-hand side is
a triangle-decomposition of G.

Given a collection H and a graph G, finding a H-decomposition of G is generally a
fairly hard problem, and one that my research is currently focusing on! Specifically, in
1975, my advisor proved the following claim, which was a large part of how he got his name
in combinatorics:

Theorem 1 (Wilson:) Let H be a collection of simple graphs, and d be the GCD of the
degrees of the vertices in all of the graphs in H. Then, there is some sufficiently large integer
ND such that for any n > ND, if
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• n(n− 1) is divisible by |E(D)|, and

• n is divisible by d,

then the complete graph Kn has a H-decomposition.

My current research is into a generalization of this: suppose that we work with “almost-
complete” graphs, i.e. graphs where the degree of every vertex is ≥ n · (1 − ε), for some
small epsilon. Does the same result hold?

In this class, we’re not going to directly attack the above question – it’s mostly there
as motivation for *why* we study graph decompositions. Instead, we’re going to focus
on graph decompositions where we’re breaking a graph up into relatively few pieces, and
discuss when such things are even possible! We start in this section:

2 Warmup: The Petersen Graph

Question 2 Can K10 be decomposed into three copies of the Petersen graph?

At first glance, this seems plausible: K10 has 45 edges and 10 vertices, all regular of degree
9, while each Petersen graph has 15 edges, 10 vertices, and is regular of degree 3.

However, repeated attempts to find such a decomposition will quickly start to persuade
you that no such thing exists. A proof that no such decomposition exists can be brute-
forced by simply checking all of the ways to draw a pair of edge-disjoint Petersen graphs on
ten vertices, but a far more elegant and beautiful way to do this is via the tools we’ve just
developed in spectral graph theory!

Specifically: take any edge-disjoint pair of Petersen graphs that are subgraphs of K10;
color the first of these Petersen subgraphs red and the second blue. Color the remaining
edges green. Thinking of these three colored subgraphs as graphs in their own right, denote
their adjacency matrices as APR

, APB
, and AG respectively. Then, because the union of

these three graphs is K10, we have

APR
+APB

+AG = AK10 = J − I,

where J is the 10× 10 all-1’s matrix, and I is the identity matrix.
Our plan from here is the following: 1 is not an eigenvalue of the complete graph, yet

it shows up an awful lot as an eigenvalue of the Petersen graph (recall from class/the HW
that the spectrum of the Petersen graph is {31, 15, (−2)4}.) We are going to show that this
causes a contradiction.

To do this, recall that we actually know the Petersen graph’s eigenvector for the eigen-
value 3: specifically, because the Petersen graph is regular of degree 3, we have

AP


1
1
...
1

 =


deg(v1)
deg(v2)

...
deg(v10)

 =


3
3
...
3

 ,

and thus that the all 1’s vector is the eigenvector for the eigenvalue 3.
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Consequently, we know that (because eigenvectors for different eigenvalues are orthog-
onal) all of the eigenvalues for 1 are orthogonal to this all-1’s vector. Take UR,1 to be the
5-dimensional eigenspace corresponding to the red Petersen graph’s eigenvalue 1, and define
UB,1 similarly. Then, because these all live in the 9-dimensional space {v : v ⊥ (1, 1, . . . 1)},
any two of them must share a vector in common! Let v ∈ UB,1 ∩ UR,1 be such a vector.

Then, what happens when we multiply AK10 by v? Well: v is orthogonal to the all-1’s
vector, so we have

AK10v = (J − I)v =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

v − Iv = 0− v = (−1)v.

But, on the other hand, if we use our decomposition of K10, we instead have

AK10v = (APR
+APB

+AG)v = APR
v +APB

v +APG
v = 2v +APG

v.

Combining these results, we have

−v = 2v +APG
v⇒ AGv = −3v

In other words, v is an eigenvector of AG, with eigenvalue −3. Because −3 is not an
eigenvalue of the Petersen graph, we can conclude that our green graph is not the Petersen
graph.

3 The Lagrangian

The above was a beautiful proof! As mathematicians, a natural thing to want to do with
any such proofs is to try to find ways to extend their concepts to other questions; how can
we do this here?

Well: in some sense, the main trick we used in the proof above was the idea that we
were trying to decompose a graph that didn’t have a given eigenvalue into a relatively small
number of copies of a second graph that *did* have that eigenvalue, and specifically had
that eigenvalue a ton of times! However, one issue with the example above is that it relied
on us knowing the given eigenvalues *specifically* for our graphs, and kind-of came down
to a calculation at the end that was a little out of nowhere. Often, we might not know the
precise eigenvalues of the graph we’re looking to study, nor the precise eigenvalues of the
graphs we’re trying to decompose into, but rather just (say) their signs: one of them will
have lots of negative small eigenvectors, while the other will just have one or two rather big
negative ones.

Can we make a tool that is “fuzzy” enough to not need us to know all of the eigenvalues,
but still cares enough about them to distinguish between (say) things that are like the
complete graphs Kn (spectrum {(n− 1)1, (−1)n−1}) and things like the complete bipartite
graphs Kn,m (spectrum {±(

√
nm)1, (0)n−2}?)

As it turns out, yes! We call this tool the Lagrangian, and define it here:
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Definition. The Lagrangian of a graph G is a function Rn → R defined as follows:

fG(v) = 〈AGv,v〉 = (AGv)T · v =
∑

(i,j)∈E(G)

vivj .

On one hand, you can think of this function as being the sum of all of the edges in G,
“weighted” by the components of v. On the other hand, you may recognize this from our
earlier work as a really useful function, that had the nice property

λmin · ||v|| ≤ fG(v) ≤ λmax||v||,

and attained these minima and maxima values on values of v that were eigenvectors for
λmin, λmax.

This tool has a number of properties! We state one of the most useful of them here:

Proposition 3 Setup: Given a graph G, let W+ denote the space generated by all of the
positive eigenvectors of AG, W− the space generated by all of the negative eigenvectors, and
W 0 the eigenspace corresponding to 0. Notice that because AG is symmetric, by the spectral
theorem, we can write any element in Rn as a sum of one element from each of these spaces.

We claim that our function fG is positive-semidefinite1 on the space W+⊕W 0 (i.e. the
space generated by all of the nonnegative eigenvectors,) and negative-semidefinite on the
space W− ⊕W 0.

Proof. On the HW!

So: this is an easily-calculated function that does the “fuzzy” thing we wanted it to do:
find eigenvalues! We close this section by mentioning a famous result we’ll prove next class
in like five minutes with this tool, which (I think) really doesn’t admit any nice non-spectral
proofs:

Theorem 4 The complete graph Kn cannot be decomposed into ≤ n− 2 complete bipartite
graphs.

1A function is positive-semidefinite if its values are always ≥ 0.
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