Spectral Graph Theory	Instructor: Padraic Bartlett	
Week 3	Homework 2	

Attempt the problems that seem interesting! Easier exercises are marked with (-) signs; harder ones are marked by $(*)$. Open questions are denoted by writing ($* *$), as they are presumably quite hard. Oh! Also, typos build character: if you find any (not that there ever could be such things in my problem sets,) correct them to the most reasonable thing you can think of and proceed from there!

1. In class, we found the eigenvectors/values of the directed cycle D_{n}. Use these to find the eigenvectors/values of the undirected cycle C_{n}.
2. Using our results on the cycle graph, find the spectrum of the path graph P_{n}.
3. Answer the question we asked yesterday on the HW/today in class: if G_{1} and G_{2} are a pair of graphs with the same spectrum, are G_{1} and G_{2} isomorphic?
4. Prove or disprove: There is no graph with eigenvalue $-1 / 2$.
5. (-) What happens to a graph when you add additional vertices that aren't connected to anything?
6. (-) In terms of the graphs G_{1} and G_{2}, what's the spectrum of the graph given by the disjoint union of G_{1} and G_{2} ?
7. Find the spectrum of the Petersen graph. For extra style points, find it without ever actually looking at an adjacency matrix.
8. Prove the series of linear algebra propositions we stated in class, should you not believe them:
(a) The area of a parallelogram spanned by the two vectors (a, b) and (c, d) is $\mid a d-$ $b c \mid$; similarly, the area of a parallelepiped spanned by $(a, b, c),(d, e, f),(x, y, z)$ is $|a e z-a f y+b f x-b d z+c d y-c e x|$.
(b) If I_{n} is the $n \times n$ identity matrix, then $\operatorname{det}\left(I_{n}\right)=1$.
(c) Suppose that A is a $n \times n$ matrix. If A^{\prime} is the matrix acquired by multiplying the k-th row of A by some constant λ, then $\operatorname{det}\left(A^{\prime}\right)=\lambda \operatorname{det}(A)$.
(d) For any pair of $n \times n$ matrices $A, B, \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$. In particular, this tells us that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$, whenever A is an invertible matrix.
