Spectral Graph Theory		Instructor: Padraic Bartlett
	Homework 2	
Week 3		Mathcamp 2011

Attempt the problems that seem interesting! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard. Oh! Also, typos build character: if you find any (not that there ever could be such things in my problem sets,) correct them to the most reasonable thing you can think of and proceed from there!

- 1. In class, we found the eigenvectors/values of the directed cycle D_n . Use these to find the eigenvectors/values of the undirected cycle C_n .
- 2. Using our results on the cycle graph, find the spectrum of the path graph P_n .
- 3. Answer the question we asked yesterday on the HW/today in class: if G_1 and G_2 are a pair of graphs with the same spectrum, are G_1 and G_2 isomorphic?
- 4. Prove or disprove: There is no graph with eigenvalue -1/2.
- 5. (-) What happens to a graph when you add additional vertices that aren't connected to anything?
- 6. (-) In terms of the graphs G_1 and G_2 , what's the spectrum of the graph given by the disjoint union of G_1 and G_2 ?
- 7. Find the spectrum of the Petersen graph. For extra style points, find it without ever actually looking at an adjacency matrix.
- 9. Prove the series of linear algebra propositions we stated in class, should you not believe them:
 - (a) The area of a parallelogram spanned by the two vectors (a, b) and (c, d) is |ad bc|; similarly, the area of a parallelepiped spanned by (a, b, c), (d, e, f), (x, y, z) is |aez afy + bfx bdz + cdy cex|.
 - (b) If I_n is the $n \times n$ identity matrix, then $det(I_n) = 1$.
 - (c) Suppose that A is a $n \times n$ matrix. If A' is the matrix acquired by multiplying the k-th row of A by some constant λ , then $\det(A') = \lambda \det(A)$.
 - (d) For any pair of $n \times n$ matrices A, B, $\det(AB) = \det(A) \cdot \det(B)$. In particular, this tells us that $\det(A^{-1}) = 1/\det(A)$, whenever A is an invertible matrix.