Spectral Graph Theory	Instructor: Padraic Bartlett
He	omework 1
Week 3	Mathcamp 2011

Attempt the problems that seem interesting! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard. Oh! Also, typos build character: if you find any (not that there ever could be such things in my problem sets,) correct them to the most reasonable thing you can think of and proceed from there!

- 1. (*) Using ideas similar to the triangle-counting argument we employed earlier, find a closed formula for the number of 4-cycles on a graph involving the adjacency matrix. If you succeed, attempt to find one for the number of 5-cycles! Remember to test your formulas against some examples. Wolfram Alpha is an excellent tool for taking powers of large matrices.
- 2. Use this tool to prove that the girth of the Petersen graph is 5.
- 3. Cows!
- 4. For any n, k, find a graph on n vertices with k as an eigenvalue.
- 5. Prove or disprove the following: if two graphs have the same spectrum, they are isomorphic.
- 9. Prove the series of linear algebra propositions we stated in class, should you not believe them:
 - (a) (-) Show that the inverse of a permutation matrix P is a permutation matrix, and furthermore that this inverse is precisely P^T .
 - (b) (-) Show that multiplying P_{σ} on the left by a vector **v** is the same as multiplying $P_{\sigma^{-1}}$ on the right by **v**.
 - (c) (-) Show that permutation matrices are unitary.
 - (d) Show that the product of any two unitary matrices is still unitary.
 - (e) Show that if a matrix $A = EDE^T$, where E is a unitary matrix and D is a diagonal matrix, then A's eigenvalues are precisely the diagonal entries of D (with multiplicity.)