Spectral Graph Theory

Lecture 5: The Matrix-Tree Theorem

Week 3

Mathcamp 2011

This lecture is also going to be awesome, but shorter, because we're finishing up yesterday's proof with the first half of lecture today.

So: a result we've proven in like 3-4 MC classes this year, in different ways, is the following:

Theorem 1 (Cayley) There are n^{n-2} labeled trees on n vertices.

Today, we're going to prove the ridiculously tricked-out version of this theorem:

Theorem 2 (The Matrix-Tree Theorem) Suppose we have any graph G. Let L_G denote the Laplacian¹ of G. Let Γ denote the number of spanning trees² of G: then, we have

$$\Gamma = \frac{1}{n} \cdot \mu_2 \cdot \ldots \cdot \mu_n,$$

where $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_n$ are the *n* eigenvalues of the Laplacian of *G* written in increasing order, and we've removed the first one of these from our product above.

Proof. Before we begin, we first review some key facts about the Laplacian:

- 1. The Laplacian is real-valued and symmetric: so it has n eigenvalues counting multiplicity, by the spectral theorem.
- 2. The Laplacian has 0 as an eigenvalue: this is because summing any of its rows yields 0, and therefore the all-1's vector is an eigenvalue for 0.
- 3. The Laplacian is positive-definite³, and therefore all of its eigenvalues are ≥ 0 .

Prove these things on the HW, if you don't believe them!

Also: for notational clarity, let $L^{\{v_1,\ldots,v_k\}}$ denote the matrix L_G if we delete the k rows and columns corresponding to these vectors, and $l_{x,x}$ denote the quantity det $(L^{\{x\}})$. We now proceed to prove our claim in two parts: first, we claim that

$$\Gamma = l_{x,x}$$

for any $x \in V(G)$.

We prove this claim by a pair of nested inductions: first on the number n of vertices in G, and then (at each level) by inducting on the number of edges in this n-vertex graph.

The first case where our notation makes sense is n = 2: there, we have that $l_{x,x}$ is simply the degree of the other remaining vertex, which is either 0 (in which case our graph

¹The Laplacian of a graph G is the $n \times n$ matrix with rows/columns indexed by vertices, with a -1 in every (i, j) where an edge runs from (i, j), the degree of vertex i in the entry (i, i), and 0's elsewhere.

 $^{^{2}}$ A spanning tree of a graph G is a subgraph that uses every vertex in G and is also a tree.

³A matrix A is called **positive-semidefinite** iff $\mathbf{x}^{T}(A\mathbf{x}) \geq 0$, for any vector \mathbf{x} .

is disconnected and no spanning trees exist) or 1 (in which case this one edge forms the unique spanning tree.) So our claim holds here.

We assume that we've proven our case for all k < n, and proceed to n vertices. In the case where there are no edges leaving the vertex x, we are trivially done: $\Gamma = 0$ because $\{x\}$ is disconnected from the graph, while $L^{\{x\}}$ is just L_G where we've removed an all-zero row and column, which is therefore a matrix that still has zero row sums (and thus one whose determinant, $l_{x,x}$, is 0.)

Otherwise, there is an edge involving x: denote it as $\{x, y\}$. How does deleting this edge from L_G change $l_{x,x}$? Well: deleting this edge decreases the (x, x) and (y, y)-th entries of L_G by 1, and increases the (x, y) and (y, x) entries of L_G to 0. However, in $L^{\{x\}}$, the only one of those changes that we can still see is the decrement of the (y, y)-th entry by 1, as we deleted the row and column involving x!

Expanding, if we denote this modified matrix as M, we can see that

$$det(M) = (-1)^{y-1} det(M, with row y switched to the top) = (-1)^{y-1} \sum_{1 \le i \le n-1} (-1)^{i-1} \cdot m_{i,y} \cdot det(M, row y at top, row y and col j deleted) = (-1)^{y-1} \sum_{1 \le i \le n-1} (-1)^i \cdot m_{i,y} \cdot det(M with row y and col j deleted) = -(-1)^{2y-2} \cdot det M_{y,y} + (-1)^{y-1} \sum_{1 \le i \le n-1, i \ne y} (-1)^i \cdot m_{i,y} \cdot det(M_{y,j}) = - det(L^{\{x,y\}}) + l_{x,x}.$$

Thus, we've shown that removing an edge from G decreases $l_{x,x}$ by $\det(L^{\{x,y\}})$, which (by induction) is the number of spanning trees on the graph G if we contracted the edge $\{x, y\}$ to a point. But this is just the number of spanning trees on G that specifically use the edge $\{x, y\}$. Therefore, by repeatedly doing this process, our inductive claim holds (i.e. we've proven that $\Gamma = l_{x,x}$.)

To finish this proof, we just need to do the following two things, which you will prove on the HW:

1. Notice that because we can factor the characteristic polynomial det(xI - L) by its roots, we have that

$$\frac{\partial}{\partial x} \left(\det(xI - L) \right) \Big|_{x=0} = (-1)^{n-1} \cdot \mu_2 \cdot \ldots \cdot \mu_n.$$

2. Conversely: notice as well that

$$\frac{\partial}{\partial x} \left(\det(xI - L) \right) = \sum_{x=1}^{n} \det(tI - L^{\{x\}}),$$

and thus that when we plug in zero to the above equation, we get $(-1)^{n-1} \cdot \sum_{x=1}^{n} l_{x,x}$. Combining these two observations with our earlier one that $\Gamma = l_{x,x}$ gives us that

$$\Gamma = \frac{1}{n} \cdot \mu_2 \cdot \ldots \cdot \mu_n,$$

as claimed.