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Lecture 5: The Matrix-Tree Theorem

Week 3 Mathcamp 2011

This lecture is also going to be awesome, but shorter, because we’re finishing up yester-
day’s proof with the first half of lecture today.

So: a result we’ve proven in like 3-4 MC classes this year, in different ways, is the
following:

Theorem 1 (Cayley) There are nn−2 labeled trees on n vertices.

Today, we’re going to prove the ridiculously tricked-out version of this theorem:

Theorem 2 (The Matrix-Tree Theorem) Suppose we have any graph G. Let LG denote the
Laplacian1 of G. Let Γ denote the number of spanning trees2 of G: then, we have

Γ =
1

n
· µ2 · . . . µn,

where µ1 ≤ µ2 ≤ . . . ≤ µn are the n eigenvalues of the Laplacian of G written in increasing
order, and we’ve removed the first one of these from our product above.

Proof. Before we begin, we first review some key facts about the Laplacian:

1. The Laplacian is real-valued and symmetric: so it has n eigenvalues counting multi-
plicity, by the spectral theorem.

2. The Laplacian has 0 as an eigenvalue: this is because summing any of its rows yields
0, and therefore the all-1’s vector is an eigenvalue for 0.

3. The Laplacian is positive-definite3, and therefore all of its eigenvalues are ≥ 0.

Prove these things on the HW, if you don’t believe them!
Also: for notational clarity, let L{v1,...vk} denote the matrix LG if we delete the k rows

and columns corresponding to these vectors, and lx,x denote the quantity det(L{x}). We
now proceed to prove our claim in two parts: first, we claim that

Γ = lx,x

for any x ∈ V (G).
We prove this claim by a pair of nested inductions: first on the number n of vertices in

G, and then (at each level) by inducting on the number of edges in this n-vertex graph.
The first case where our notation makes sense is n = 2: there, we have that lx,x is

simply the degree of the other remaining vertex, which is either 0 (in which case our graph

1The Laplacian of a graph G is the n × n matrix with rows/columns indexed by vertices, with a −1 in
every (i, j) where an edge runs from (i, j), the degree of vertex i in the entry (i, i), and 0’s elsewhere.

2A spanning tree of a graph G is a subgraph that uses every vertex in G and is also a tree.
3A matrix A is called positive-semidefinite iff xT (Ax) ≥ 0, for any vector x.
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is disconnected and no spanning trees exist) or 1 (in which case this one edge forms the
unique spanning tree.) So our claim holds here.

We assume that we’ve proven our case for all k < n, and proceed to n vertices. In the
case where there are no edges leaving the vertex x, we are trivially done: Γ = 0 because {x}
is disconnected from the graph, while L{x} is just LG where we’ve removed an all-zero row
and column, which is therefore a matrix that still has zero row sums (and thus one whose
determimant, lx,x, is 0.)

Otherwise, there is an edge involving x: denote it as {x, y}. How does deleting this edge
from LG change lx,x? Well: deleting this edge decreases the (x, x) and (y, y)-th entries of
LG by 1, and increases the (x, y) and (y, x) entries of LG to 0. However, in L{x}, the only
one of those changes that we can still see is the decrement of the (y, y)-th entry by 1, as we
deleted the row and column involving x!

Expanding, if we denote this modified matrix as M , we can see that

det(M) = (−1)y−1 det (M,with row y switched to the top)

= (−1)y−1
∑

1≤i≤n−1
(−1)i−1 ·mi,y · det (M, row y at top, row y and col j deleted)

= (−1)y−1
∑

1≤i≤n−1
(−1)i ·mi,y · det (M with row y and col j deleted)

= −(−1)2y−2 · detMy,y + (−1)y−1
∑

1≤i≤n−1,i 6=y

(−1)i ·mi,y · det (My,j)

= −det(L{x,y}) + lx,x.

Thus, we’ve shown that removing an edge from G decreases lx,x by det(L{x,y}), which (by
induction) is the number of spanning trees on the graph G if we contracted the edge {x, y}
to a point. But this is just the number of spanning trees on G that specifically use the edge
{x, y}. Therefore, by repeatedly doing this process, our inductive claim holds (i.e. we’ve
proven that Γ = lx,x.)

To finish this proof, we just need to do the following two things, which you will prove
on the HW:

1. Notice that because we can factor the characteristic polynomial det(xI − L) by its
roots, we have that

∂

∂x
(det(xI − L))

∣∣∣
x=0

= (−1)n−1 · µ2 · . . . · µn.

2. Conversely: notice as well that

∂

∂x
(det(xI − L)) =

n∑
x=1

det(tI − L{x}),

and thus that when we plug in zero to the above equation, we get (−1)n−1 ·
∑n

x=1 lx,x.

Combining these two observations with our earlier one that Γ = lx,x gives us that

Γ =
1

n
· µ2 · . . . µn,

as claimed.
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