Spectral Graph Theory	Instructor: Padraic Bartlett	
Week 3	Lecture 5: The Matrix-Tree Theorem	
		Mathcamp 2011

This lecture is also going to be awesome, but shorter, because we're finishing up yesterday's proof with the first half of lecture today.

So: a result we've proven in like 3-4 MC classes this year, in different ways, is the following:
Theorem 1 (Cayley) There are n^{n-2} labeled trees on n vertices.
Today, we're going to prove the ridiculously tricked-out version of this theorem:
Theorem 2 (The Matrix-Tree Theorem) Suppose we have any graph G. Let L_{G} denote the Laplacian ${ }^{1}$ of G. Let Γ denote the number of spanning trees ${ }^{2}$ of G : then, we have

$$
\Gamma=\frac{1}{n} \cdot \mu_{2} \cdot \ldots \mu_{n}
$$

where $\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{n}$ are the n eigenvalues of the Laplacian of G written in increasing order, and we've removed the first one of these from our product above.

Proof. Before we begin, we first review some key facts about the Laplacian:

1. The Laplacian is real-valued and symmetric: so it has n eigenvalues counting multiplicity, by the spectral theorem.
2. The Laplacian has 0 as an eigenvalue: this is because summing any of its rows yields 0 , and therefore the all-1's vector is an eigenvalue for 0 .
3. The Laplacian is positive-definite ${ }^{3}$, and therefore all of its eigenvalues are ≥ 0.

Prove these things on the HW, if you don't believe them!
Also: for notational clarity, let $L^{\left\{v_{1}, \ldots v_{k}\right\}}$ denote the matrix L_{G} if we delete the k rows and columns corresponding to these vectors, and $l_{x, x}$ denote the quantity $\operatorname{det}\left(L^{\{x\}}\right)$. We now proceed to prove our claim in two parts: first, we claim that

$$
\Gamma=l_{x, x}
$$

for any $x \in V(G)$.
We prove this claim by a pair of nested inductions: first on the number n of vertices in G, and then (at each level) by inducting on the number of edges in this n-vertex graph.

The first case where our notation makes sense is $n=2$: there, we have that $l_{x, x}$ is simply the degree of the other remaining vertex, which is either 0 (in which case our graph

[^0]is disconnected and no spanning trees exist) or 1 (in which case this one edge forms the unique spanning tree.) So our claim holds here.

We assume that we've proven our case for all $k<n$, and proceed to n vertices. In the case where there are no edges leaving the vertex x, we are trivially done: $\Gamma=0$ because $\{x\}$ is disconnected from the graph, while $L^{\{x\}}$ is just L_{G} where we've removed an all-zero row and column, which is therefore a matrix that still has zero row sums (and thus one whose determimant, $l_{x, x}$, is 0 .)

Otherwise, there is an edge involving x : denote it as $\{x, y\}$. How does deleting this edge from L_{G} change $l_{x, x}$? Well: deleting this edge decreases the (x, x) and (y, y)-th entries of L_{G} by 1 , and increases the (x, y) and (y, x) entries of L_{G} to 0 . However, in $L^{\{x\}}$, the only one of those changes that we can still see is the decrement of the (y, y)-th entry by 1 , as we deleted the row and column involving x !

Expanding, if we denote this modified matrix as M, we can see that

$$
\begin{aligned}
\operatorname{det}(M) & =(-1)^{y-1} \operatorname{det}(M, \text { with row } y \text { switched to the top }) \\
& =(-1)^{y-1} \sum_{1 \leq i \leq n-1}(-1)^{i-1} \cdot m_{i, y} \cdot \operatorname{det}(M, \text { row } y \text { at top, row } y \text { and col } j \text { deleted }) \\
& =(-1)^{y-1} \sum_{1 \leq i \leq n-1}(-1)^{i} \cdot m_{i, y} \cdot \operatorname{det}(M \text { with row } y \text { and col } j \text { deleted }) \\
& =-(-1)^{2 y-2} \cdot \operatorname{det} M_{y, y}+(-1)^{y-1} \sum_{1 \leq i \leq n-1, i \neq y}(-1)^{i} \cdot m_{i, y} \cdot \operatorname{det}\left(M_{y, j}\right) \\
& =-\operatorname{det}\left(L^{\{x, y\}}\right)+l_{x, x} .
\end{aligned}
$$

Thus, we've shown that removing an edge from G decreases $l_{x, x}$ by $\operatorname{det}\left(L^{\{x, y\}}\right)$, which (by induction) is the number of spanning trees on the graph G if we contracted the edge $\{x, y\}$ to a point. But this is just the number of spanning trees on G that specifically use the edge $\{x, y\}$. Therefore, by repeatedly doing this process, our inductive claim holds (i.e. we've proven that $\Gamma=l_{x, x}$.)

To finish this proof, we just need to do the following two things, which you will prove on the HW:

1. Notice that because we can factor the characteristic polynomial $\operatorname{det}(x I-L)$ by its roots, we have that

$$
\left.\frac{\partial}{\partial x}(\operatorname{det}(x I-L))\right|_{x=0}=(-1)^{n-1} \cdot \mu_{2} \cdot \ldots \cdot \mu_{n}
$$

2. Conversely: notice as well that

$$
\frac{\partial}{\partial x}(\operatorname{det}(x I-L))=\sum_{x=1}^{n} \operatorname{det}\left(t I-L^{\{x\}}\right)
$$

and thus that when we plug in zero to the above equation, we get $(-1)^{n-1} \cdot \sum_{x=1}^{n} l_{x, x}$. Combining these two observations with our earlier one that $\Gamma=l_{x, x}$ gives us that

$$
\Gamma=\frac{1}{n} \cdot \mu_{2} \cdot \ldots \mu_{n}
$$

as claimed.

[^0]: ${ }^{1}$ The Laplacian of a graph G is the $n \times n$ matrix with rows/columns indexed by vertices, with a -1 in every (i, j) where an edge runs from (i, j), the degree of vertex i in the entry (i, i), and 0 's elsewhere.
 ${ }^{2}$ A spanning tree of a graph G is a subgraph that uses every vertex in G and is also a tree.
 ${ }^{3}$ A matrix A is called positive-semidefinite iff $\mathbf{x}^{T}(A \mathbf{x}) \geq 0$, for any vector \mathbf{x}.

