
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 4: Spectra and χ

Week 3 Mathcamp 2011

This lecture is going to be awesome.

Theorem 1 For any graph G on n vertices, we have χ(G) ≥ 1− λmax(G)
λmin(G) .

Proof. This proof is easily the hardest/most conceptually difficult thing we’re going to
do in this class, and involves some rather strange/mysterious steps. To make this less
mysterious, we’re going to begin this proof with a “roadmap:” i.e. before we start, I want
to talk about how the proof is going to go, and what tricks we’re going to use later (so that
they’re not so baffling when they do show up!)

So: roadmap. We’re studying the object AG, G’s adjacency matrix; specifically, we want
a way to think about χ(G) while working with AG. How can we do this? Well: one way is
the following:

• Take G, and turn it into a n-dimensional vector space, by associating to each vertex
vj the basis vector ej of Rn that’s got a 1 in the i-th coördinate and 0’s everywhere
else.

• Once you’ve done this, take any χ(G) = k-coloring of G, and let C1, . . . Ck be the k
distinct color classes of the vertices in G.

• So we’ve taken our graph G, turned it into a vector space, and used this abstraction
to give us a way to “condense” G along its color classes C1, . . . Ck. How can we use
these color classes to talk about AG, and specifically about its eigenvalues?

• Well: let λmax be the largest eigenvalue of AG, and v be a corresponding eigenvector
for λ. Because the basis vectors {e1, . . . en} for Rn are each in one of the Ui’s, we can
find a way of writing v as a sum of elements

k∑
i=1

ci · ui,

where each ui is in Ui, and they’re all of length 1. Notice that all of the ui are
orthogonal, as each ui only has nonzero coördinates at the locations where Ui contains
the appropriate basis vector ei.

• Now, let U be the vector space generated by taking the vectors {u1,u2, . . .uk} as a
basis: i.e. look at the space formed by taking linear combinations made precisely
out of these ui’s. This is a k-dimensional space, and can be thought of as a way to
“collapse” our original vector space along the k color classes we have, in a way that
preserves the largest eigenvector of AG, as it’s in this space!
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• Let S denote the n× k matrix that sends a vector in U (written in the k-dimensional
form (a1u1, a2u2, . . . akuk) to the same vector as expressed in Rn (i.e as the n-
dimensional vector

∑
aiui). This matrix is specifically given as

S =


...

...
...

u1 u2 . . . un
...

...
...

 .
• Finally, examine the linear map B = ST ·AG · S, which takes in k-dimensional things

(i.e. elements in U) and spits out other k-dimensional things (because the dimension
of this matrix is (k × n) · (n × n) · (n × k) = (k × k).) In essence, this map takes in
elements in our condensed space U , interprets them as vectors in Rn, acts on them by
AG, and then takes them back into U . This certainly seems like a promising object
to study! – it seems to be designed to preserve the largest eigenvalue of AG, and yet
only deal with a χ(G)-sized subspace.

• Explicitly, we claim that this “condensing map” B has the following properties:

– It has χ(G)-many eigenvalues.

– Its maximal eigenvalue is the same as the eigenvalue of AG.

– Its minimal eigenvalue is bounded below by the minimal eigenvalue of AG.

– The sum of all of the eigenvalues for this graph is 0.

• Notice that if we can prove these observations, we are done! I.e. if you plug in these
three observations together, bounding all of the non-maximal eigenvalues below by
λmin and noting that the maximal one is λmax, we will have shown that λmax(G) +
(χ(G)− 1)λmin(G) ≤ 0, which after some rearranging1 gives our inequality above.

So, it suffices to prove these observations. We do this in the following series of lemmas
and definitions:

Definition. Given two vectors u,v in the same vector space, their inner product 〈u,v〉
is just their dot product:

〈u,v〉 = uT · v =

n∑
i=1

uivi.

It’s just notation, but it helps clean up a lot of things. We’ll use it heavily throughout the
following proofs.

Lemma 2 B is a symmetric matrix.

Proof. To see this, just take its transpose, remembering that AG is itself a symmetric
matrix: BT = (ST ·AG · S)T = (ST )T ·ATG · ST = S ·AG ·AT .

1and noticing that the smallest eigenvalue λmin is always negative for adjacency matrices of loopless
graphs!
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Corollary 3 B has χ(G)-many eigenvalues.

Proof. Just use the spectral theorem!

Furthermore, by applying the spectral theorem on B again, you can prove (on the HW!)
the following proposition:

Proposition 4 For any real symmetric matrix A and for any vector v with ||v|| = 1, we
have

µmin ≤ 〈Av,v〉 ≤ µmax,

where µmin, µmax are the smallest and largest eigenvectors of A, respectively. Furthermore,
these bounds are always attained (specifically, by taking v to be an eigenvector corresponding
to either the smallest or largest eigenvalue.)

The reason we care about the above proposition is the following lemma:

Lemma 5 For any two vectors v,u ∈ U , we have

〈Bu,v〉 = 〈(ST ·AG · S)u,v〉 = 〈(AG · S)u, Sv〉

Proof. By definition, we have

〈(ST ·AG · S)u,v〉 = (ST ·AG · Su)T · v
= (uTST ·ATG · S) · v
= (uTST ·ATG) · (Sv)

= (AG · Su)T · (Sv)

= 〈(AG · S)u, Sv〉.

Why do we mention this lemma? Well, it allows us to prove another one of B’s claimed
properties:

Corollary 6 The eigenvalues of B are all bounded above by AG’s maximum eigenvalue
λmax, and below by AG’s minimum eigenvalue λmin.

Proof. In lemma 4, we proved that every inner product 〈Bv),v〉 can be written in the
form 〈(AG · S)u, Su〉. So, if we apply our proposition above to the real symmetric matrix
AG, we have just shown that these values 〈(AG · S)u, Su〉 are bounded above by λmax and
below by λmin, where these are AG’s maximum and minimum eigenvalues.

Therefore, we know that we must have µmax ≤ λmax and µmin ≤ λmin, as these values
are bounding all of the possible results for 〈Bv,v〉, and therefore in specific are bounding
B’s maximum and minimum eigenvalues µmin, µmax.

This is another one of the properties we wanted to prove: i.e. that all of B’s eigenvalues
are bounded below by λmin!

We only have two more things to show, then: that λmax is an eigenvalue of B (by the
above lemma, we know that it would be a maximal eigenvalue if it is one), and that the
sum of the eigenvalues of B is 0. We do this in two more lemmas:
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Lemma 7 B has λmax as an eigenvalue.

Proof. Specifically, notice that v =
∑k

i=1 ci · ui from earlier is an eigenvector for λmax.
This is because for any of the basis vectors ui, we have

〈Bv,ui〉 = 〈AGv,ui〉
= (AGv)T · ui
= λmax(v)T · ui

= λmax

 k∑
j=1

cj · uTj

 · ui
= λmax

 k∑
j=1

cj · (uTj · ui)


= λmax · ci · ||ui||
= λmax · ci,

where we justify those last two steps because the ui’s are all orthogonal and have norm 1.
But this means that the i-th coördinate of (ST ·AG · Sv) · v is precisely λmax · ci, for every
i: i.e. that

ST ·AG · Sv = λmax · (c1u1, . . . cnun) = λmax · v,

and thus that λmax is an eigenvalue, as claimed.

Lemma 8 The trace2 of B is 0.

Proof. To see why, simply notice that we have

〈Bui,ui〉 = 〈AGui,ui〉.

However, notice that for any two basis vectors ex, ey of Rn that lie in the same color class
Ci , we have

〈AGex, ey〉 = 〈(a1,x, a2,x, . . . an,x), ey〉 = ay,x = 0,

as there are no edges between two vertices x, y with the same color i.
Because we can write ui as the linear combination of several orthogonal elements all

from the same color class, we know that in fact we have

〈AGui,ui〉 = 0,

and therefore that 〈Bui,ui〉 is also 0. Why do we care? Well, Bui is the i-th column of B:
taking its dot product with ui then gives you the i-th element of that i-th column, i.e. the
entry in (i, i). We’ve just proven that all of these entries are 0; therefore, the trace of B is
trivially 0 as well.

2The trace of a matrix is the sum
∑n

i=1 ai,i of its diagonal elements.
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Proposition 9 The trace of a matrix is equal to the sum of its eigenvalues (counted with
respect to their algebraic multiplicity.)

Proof. The proof of this is simple: consider the characteristic polynomial! We defer the
details to the HW.

So: let’s combine these observations! We know that

• λmax is an eigenvalue of this matrix.

• All of the other eigenvalues range from λmax to λmin.

• There are k such eigenvalues counting multiplicity, by the spectral theorem.

• We know that the sum of all of these eigenvalues is 0.

So: if we bound the sum of all of the eigenvalues below by λmax+(k−1)λmin by replacing
all of the other nonmaximal eigenvalues with λmin s, we get that

λmax + (k − 1)λmin ≤ 0

⇒(k − 1)λmin ≤ −λmax

⇒k − 1 ≥ −λmax

λmin

⇒k ≥ 1− λmax

λmin
,

(where we switched the direction on our inequality above because λmin is negative!)
This is what we sought to prove. Win.
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