
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 2: Eigenvalues and their Uses

Week 3 Mathcamp 2011

As you probably noticed on yesterday’s HW, we, um, don’t really have any good tools
for finding eigenvalues yet. Let’s fix that!

1 The Determinant

Specifically, let’s fix that by introducing the idea of the determinant. The motivation
for our definition of the determinant, specifically, is coming from the idea of n-dimensional
signed volume: in other words, if I give you a list of n vectors in Rn, I want the determinant
to tell me the volume of the parallelotope spanned by these n vectors, multiplied by a factor
of ±1 to record the “orientation1” of this paralleletope.

So: in two dimensions, what is this? Well: if I give you two vectors (a, b) and (c, d), the
volume of the parallelogram spanned by these two vectors is just

|ad− bc| ,

something you can show fairly easily/is reserved for the HW.
More trickily, if I give you three vectors (a, b, c), (d, e, f), (x, y, z), if we’re really clever,

we can show that the area of the parallelepiped spanned by these three vectors is

|aez − afy + bfx− bdz + cdy − cex|
= |a · (ez − fy)− b(dz − cfx) + c(dy − ex)|
= |a · area((e, f), (y, z))− b · area((d, f), (x, z)) + c · area((d, e), (x, y))| .

So: this suggests a recursive definition for our concept of the determinant! Specifically,
it suggests the following definition:

Definition. For a n × n matrix A, let Aij denote the matrix formed from A by deleting
the i-th row and j-th column from A.

Then, we can define the determinant of A recursively2 as follows: for 1× 1 matrices,
we define det(A) = a11, and for larger n× n matrices A, we define

det(A) =

n∑
i=1

(−1)i−1a1i · det(A1i).

1By “orientation,” I am being deliberately vague here. One good interpretation of this is that we want
the sign of the determinant to change if we switch two of these vectors in our list (as visually this kind-of
inverts our paralleletope,) and want the paralleletope spanned by all of the standard basis vectors in order
to have positive volume.

2A recursive definition is one that is defined recursively!
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The determinant has a ton of properties. We list some of them here, and leave the rest
for you to prove on the HW:

1. If In is the n× n identity matrix, then det(In) = 1.

2. Suppose that A is a n × n matrix. If A′ is the matrix acquired by multiplying the
k-th row of A by some constant λ, then det(A′) = λdet(A).

3. For any pair of n × n matrices A,B, det(AB) = det(A) · det(B). In particular, this
tells us that det(A−1) = 1/ det(A), whenever A is an invertible matrix.

With these observations locked down, we move to our stated claim:

Theorem 1 If v1, . . . vn are a list of vectors in Rn, then the volume of the parallelotope
spanned by these vectors is just the absolute value of the determinant of the following matrix:

A =


v11 v12 v13 . . . v1n
v21 v22 v23 . . . v2n
v31 v32 v33 . . . v3n
...

...
...

. . .
...

vn1 vn2 vn3 . . . vnn

 ,

where vi = (vi,1, . . . vi,n).

Proof. First, recall that by the singular value decomposition theorem, we can write
any matrix A as the product

U ·D · V T ,

where U and V are a pair of unitary matrices and D is a diagonal matrix. Geometrically,
this theorem tells us that we can write any linear transformation A as the product of three
steps:

• a rotation/reflection map V T ,

• a map which stretches all of the coördinate axes by constants di, i.e. the map D, and

• another rotation/reflection map U .

So: because

det(A) = det(UDV T ) = det(U) · det(D) · det(V T ),

and the determinant of any unitary matrix3 is ±1, we have

det(A) = det(U) · det(D) · det(V T ) = ±
n∏
i=1

di,

where the di’s are the entries on the diagonal of D.
But what is the volume of our paralleletope in the first place? Well: because A · I = A,

we can regard it as the volume of the unit cube [0, 1]n under the transformation given by
A. But what does A do to a unit cube? Well:

3 This is because unitary matrices have their inverses equal to their transposes, and thus we have det(In) =
det(UU−1) = det(UUT ) = det(U) det(UT ) = det(U)2.
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• First, it passes it through a rotation/reflection map V T , which does not change the
volume.

• Then, it passses it through a map which stretches all of the coördinate axes by con-
stants di. This scales the volume by di for each such stretching; so this changes the
volume by a factor of

∏n
i=1 di.

• Finally, it passes it through another rotation/reflection map U , which does not change
the volume.

Therefore, the volume of our paralleletope is
∏n
i=1 di, as claimed.

One nice corollary of this proof is that the determinant of a matrix A is zero iff the rows
of A are linearly dependent, as the volume of the paralellotope defined by these vectors is
zero precisely when their span can be contained in some n−k-dimensional space, for k ≥ 1.

Why did we have this discussion? Well, primarily, because it gives us a really effective
tool for finding eigenvalues! Why is this? Well: what does it mean to be an eigenvalue λ
for some matrix A? It means that there is some vector v such that

Av = λv

⇔Av− λv = 0

⇔(A− λI)v = 0,

which holds iff there is some nontrivial way to combine A− λI’s rows to get to zero, which
holds iff the determinant of A− λI is zero!

In other words, we’ve just proven the following:

Proposition 2 For a matrix A, λ is an eigenvalue of A iff λ is a root of the polynomial

det(A− xI).

We’ve thus reduced our eigenvalue search to simply finding the roots of a polynomial,
something we are generally pretty decent at! We calculate some actual eigenvalues in the
next section:

2 Calculating Spectra

Example. The spectrum of Kn: The adjacency matrix of Kn is
0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

 =


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1

− In.
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Consequently, its characteristic polynomial has roots wherever the rows of
−λ 1 1 . . . 1
1 −λ 1 . . . 1
1 1 −λ . . . 1
...

...
...

. . .
...

1 1 1 . . . −λ


are linearly dependent, with multiplicity equal to n − (number of linearly independent
rows). What are these roots and multiplicities? Well: when λ = −1, this matrix is the
all-1’s matrix, and thus has only one linearly independent row: so the eigenvalue −1 occurs
with multiplicity n − 1. This leaves at most one root in the characteristic polynomial for
us to find!

So: when λ = n−1, we have that the sum of all of the rows in our matrix is 0; therefore,
this is also an eigenvalue of our matrix. As we’ve found n eigenvalues, we know that we’ve
found them all, and can thus conclude that the spectrum of Kn is {(n−1)1, (−1)n−1} (where
the superscripts here denote multiplicity, not being raised to a power,) and its characteristic
polynomial is (x− n+ 1)(x+ 1)n−1.

Example. Let Sn denote the star graph, with one central vertex connected to n− 1 outer
leaves. The adjacency matrix for this graph (if we suppose that the central vertex is
numbered n) is of the form

A =


0 0 . . . 0 1
0 0 . . . 0 1
...

...
. . .

...
...

0 0 . . . 0 1
1 1 . . . 1 0


Consequently, its characteristic polynomial has roots wherever

det


−λ 0 . . . 0 1
0 −λ . . . 0 1
...

...
. . .

...
...

0 0 . . . −λ 1
1 1 . . . 1 −λ


is zero. By applying the recursive definition of the determinant, we can expand along the
top row of our matrix and see that

det (ASn − λI) = −λ · det
(
ASn−1 − λI

)
+ (−1)n−1 · det


0 −λ 0 . . . 0
0 0 −λ . . . 0
...

...
...

. . .
...

0 0 0 . . . −λ
1 1 1 . . . 1
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From here, we apply the permutation (1, 2, . . . n − 1) 7→ (n − 1, 1, 2, . . .) to the right-side
matrix, which changes its determinant by (−1)n−2:

= −λ · det
(
ASn−1 − xI

)
+ (−1)2n−3 · det


1 1 1 . . . −λ
0 −λ 0 . . . 0
0 0 −λ . . . 0
...

...
...

. . .
...

0 0 0 . . . −λ



Finally, we take the transpose of this matrix, which does not affect the determinant. From
there, applying the definition of the determinant makes it obvious that its determinant is
the product of the diagonal entries in this matrix, as after one expansion the diagonal is
the only thing left:

= −λ · det
(
ASn−1 − xI

)
+ (−1)2n−3 · det


1 0 0 . . . 0
1 −λ 0 . . . 0
1 0 −λ . . . 0
...

...
...

. . .
...

−λ 0 0 . . . −λ



= −λ · det
(
ASn−1 − xI

)
+ (−1)2n−3 · 1 · det


−λ 0 . . . 0
0 −λ . . . 0
...

...
. . .

...
0 0 . . . −λ


= −λ · det

(
ASn−1 − λI

)
+ (−1)3n−5 · λn−2

= −λ · det
(
ASn−1 − λI

)
+ (−1)n−1λn−2.

Plugging in the observation that det(AS2 − λI) = λ2 − 1, we recursively have that

• det(AS3 − λI) = −λ(λ2 − 1) + λ1 = −λ3 + 2λ

• det(AS4 − λI) = −λ(−λ3 + 2λ)− λ2 = λ4 − 3λ2,

• and in general det(ASn − λI) = (−1)n · λn−2 · (λ2 − (n− 1)).

Consequently, by solving for the roots of this polynomial, we can see that the spectrum
of Sn is {(

√
n− 1)2, 0n−2}.
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Example. The spectrum of Cn: The adjacency matrix of Cn is

ACn



0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 1 0


.

This . . . is kinda awful. So: let’s be clever! Specifically, let’s consider instead the
directed cycle Dn, formed by taking the cycle graph Cn and orienting each edge {i, i+ 1}
so that it goes from i to i+ 1. This graph has adjacency matrix given by the following:

ADn =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


.

What’s the characteristic polynomial of this matrix? Well: it’s what you get when you
take the determinant

det(ADn − λI) = det





−λ 1 0 0 . . . 0
0 −λ 1 0 . . . 0
0 0 −λ 1 . . . 0

0 0 0 −λ . . . 0
...

...
...

. . .
. . . 1

1 0 0 . . . 0 −λ




.

If we apply the definition of the determinant, we can expand along the top row of this
matrix and write det(ADn − λI) as

− λ · det




−λ 1 0 . . . 0
0 −λ 1 . . . 0

0 0 −λ . . . 0
...

...
. . .

. . . 1
0 0 . . . 0 −λ



− 1 · det




0 1 0 . . . 0
0 −λ 1 . . . 0

0 0 −λ . . . 0
...

...
. . .

. . . 1
1 0 . . . 0 −λ



 .

The left matrix has determinant equal to the product of its diagonal entries: this can be
seen by taking its transpose and repeatedly applying the definition of the determinant. The
right matrix is a bit trickier: however, if we permute the columns of this matrix by sending
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(1, 2, . . . n−1) 7→ (n−1, 1, 2, . . .), we will change the determinant by (−1)n−2, and have our
sum of matrices in the following form:

=(−1)nλn − (−1)n−2 det




1 0 . . . 0 0
−λ 1 . . . 0 0

0 −λ . . . 0 0
...

...
. . . 1

...
0 . . . 0 −λ 1



 .

This right matrix now has determinant given by 1, which we can see by just repeatedly
applying the definition of the determinant. Therefore, we’ve shown that

det(ADn − λI) = (λn − 1) · (−1)n.

The roots of this are precisely the n-th roots of unity, i.e. the n distinct numbers
1, e(2πi)/n, e(2πi)2/n, . . . e(2πi)(n−1)/n such that any of these numbers ζ, when raised to the
n-th power, is 1. Furthermore, we can actually see that each of these eigenvalues ζ has
corresponding eigenvector given by (1, ζ, ζ2, . . . ζn−1), because

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


·



1
ζ
ζ2

ζ3

...
ζn−1


=



ζ
ζ2

ζ3

ζ4

...
1 = ζn


= ζ ·



1
ζ
ζ2

ζ3

...
ζn−1


.

Turning this into information about Cn is not a difficult thing to do: therefore, we leave
it for the homework!

With these examples worked, we can close with a question we placed on the last HW
set, whose answer we should now be able to answer:

Question 3 If G1 and G2 are a pair of graphs with the same spectrum, are G1 and G2

isomorphic?
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