
Spectral Graph Theory Instructor: Padraic Bartlett

Lecture 1: An Introduction to Spectral Theory

Week 3 Mathcamp 2011

1 Motivation/Definitions

For those of you who’ve been in the graph theory courses for the last week, something you
might have noticed about graph theory is that we really, um, don’t understand very much.
We don’t have terribly good characterizations of graphs based on their chromatic number,
we don’t understand how k-flows work on graphs, we don’t know the chromatic number of
the unit distance graph, and we only just recently discovered a decent characterization of
perfect graphs (which are honestly pretty simple, as far as graphs go!)

Conversely, for those of you who’ve been in the linear algebra sequence for the last week:
something you might have noticed is that we’re (honestly) pretty good at this stuff! If I
give you a linear map f : Rn → Rn, you can:

• Describe f as a n× n matrix, Af !

• Find all of the eigenvectors and eigenvalues of Af – i.e. find all of the subspaces Ei
such that f(Ei) = Ei, and find the constants that f dilates these subspaces by!

• If f happens to be particularly nice and has n eigenvalues (counting multiplicity),
then we can make a basis for Rn out of its eigenvectors!

• Furthermore, in such a nice case, we can write Af as UDUT , where U is a unitary
matrix1 and D is a diagonal matrix2 with entries made out of Af ’s eigenvalues!

So: Graphs are hard. Linear algebra is easy! How can we combine these?
One way (specifically, the way we’re going to focus on in this course:) the adjacency

matrix!

Definition. Given a graph G with vertex set {1, . . . n}, we define its adjacency matrix
AG as the following n× n matrix:

A = {aij : aij = 1 if {i, j} ∈ E(G), and 0 otherwise.}

There are a bunch of alternate/different ways to associate graphs to matrices (the Lapla-
cian and incidence matrices, in particular, are fairly interesting things to study;) for now,
however, we’ll focus on the adjacency matrix, as it’s easy to work with and fairly nice.
Specifically, one property of these matrices that we’ll use constantly is that these matrices
are symmetric and real-valued! This allows us to apply the spectral theorem:

1A unitary matrix is a matrix whose columns form an orthonormal basis for Rn.
2A diagonal matrix is a matrix where its only nonzero entries are on the diagonal.

1



Theorem 1 Any real-valued symmetric matrix A has n eigenvalues (counting multiplicity)
and n corresponding eigenvectors, which we can choose to all be orthogonal to each other.
More explicitly, we can write A = EDET , where

• E is an orthonormal matrix whose columns are the eigenvectors of A, and

• D is a diagonal matrix whose entries are the corresponding eigenvalues of A.

For reference, we calculate a few easy-to-find adjacency matrices:

Example. 1. The graph Kn has adjacency matrix with 0’s on the diagonal and 1’s
everywhere else: 

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0


2. The empty graph Kn’s adjacency matrix is identically 0:

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


3. Enumerate the vertices of the cycle graph Cn as {1, 2, . . . n} and its edges as {{i, i+1} :

1 ≤ i ≤ n}. Then, its adjacency matrix has ones as depicted below:

0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 1 0


2 Applications of the Adjacency Matrix: Counting Paths /

Walks

So: we have these graphs, and we’ve turned them into matrices. How can we use these
matrices to get back information about these graphs?

One quick application is to counting walks on a graph! Specifically: suppose we
have a graph G on n vertices, and two nodes i, j ∈ V (G). How do we count all of the walks3

of length k from i to j?

3A walk of length n from vertex i to vertex j is a sequence P = (i, {i, x1}, x1, {x1, x2}, . . . {xn, j}, j).

2



Well: let’s limit ourselves to just walks of length 1. Then, it’s trivially just 1 if there
is an edge connecting i and j, and 0 otherwise. What about walks of length 2? Well: any
walk of length two will have to connect i to some vertex v, and then connect v to j: i.e.
it’s the sum

n∑
v=1

isEdge(i, v) · isEdge(v, j).

But wait! We’ve defined these isEdge functions earlier – specifically, we defined the
adjacency matrix AG of G in such a way that aij = 1 whenever there is an edge from i to j,
and 0 otherwise. So, in this notation, we have that the number of walks from i to j is just

n∑
v=1

aiv · avk,

which we can recognize as the dot product

[
ai1 ai2 . . . ain

]
·


a1j
a2j
. . .
anj

 .
But this is just the dot product of the i-th row and the j-th row of AG! So, we’ve just

proven the following:

Proposition 2 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A.
Then the (i, j)-th entry of A2 denotes the number of walks of length 2 from i to j.

We can easily generalize this to walks of length k:

Theorem 3 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. Then
the (i, j)-th entry of Ak denotes the number of distinct walks of length k from i to j.

Proof. As discussed above, this is trivially obvious for k = 1.
We proceed by induction on k. Suppose that we know that the entries of Ak correspond

to the number of walks of length k from i to j. Given i and j, how can we find all of the
walks of length k + 1 from i and j? Well: any walk of length k + 1 from i to j can be
described as a walk from i to some vertex v of length k, and then a walk of length 1 from
v to j itself! So, if we just simply use the summation trick we used before, we can see that

numberOfWalksk+1(i, j) =
n∑
v=1

numberOfWalksk(i, v) · isEdge(v, j)

= (i, j)− th entry of AkG ·AG
= (i, j)− th entry of Ak+1

G .

3



As a quick corollary, we have the following:

Corollary 4 Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. The
number of distinct triangles4 (v1, v2, v3) contained within G is tr(A3)/6.

Proof. A triangle with a fixed starting point and order in which to visit its vertices is
precisely a closed walk of length 3. There are three possible starting points (v1, v2, v3) and
two possible orientations (clockwise, counterclockwise) in which to traverse any such closed
walk; therefore, the number of triangles is just 1/6-th of the number of closed walks on a
graph of length 3.

But the number of closed walks on a graph of length 3 is just the sum over all v ∈ V (G)
of the closed length-3 walks starting at v: i.e. the sum of the diagonal entries in A3, which
is (by definition) tr(A3).

Question 5 Can you derive a similar formula for 4-gons?

3 Adjacency Matrices and Isomorphism

As we saw in the introduction to graph theory class, to really work with graphs we need to
consider them only up to isomorphism – i.e. we want to think of the Petersen graph as just
anything with the same vertex-edge relations as the Petersen graph, and not care so much
about the labeling of its vertices. However, adjacency matrices care very much about the
labeling of our vertices: i.e. for the two graphs below,

despite the fact that they’re both “pentagons,” their adjacency matrices are quite different:

AG1 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , AG2 =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0


This is . . . troublesome. If we’re going to use linear algebra to study our graphs, getting

different results whenever we label our graph differently is going to give us no end of trouble.
So: can we say anything about the relation between these matrices at all?

Thankfully, there is! To say precisely what it is, we need the following definition:

4A triangle in G is a triple (v1, v2, v3) where all of the edges {v1, v2}, {v2, v3}, {v3, v1} are contained
within G.

4



Definition. A n× n matrix P whose entries are all either 0 or 1 is called a permutation
matrix if P has exactly one 1 in each of its rows and columns. For example, the following
matrix is a permutation matrix: 

0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0


The reason we call this a permutation matrix is because multiplying a vector v on the left
by P “permutes” v’ entries! For example

0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 ·


v1
v2
v3
v4
v5
v6

 =



v2
v6
v1
v5
v4
v3


Given a permutation σ : {1, . . . n} → {1, . . . n}, we will sometimes write Pσ to denote the

permutation matrix such that P (v1, . . . vn) = (vσ(1), . . . vσ(n)). It bears noting that every
permutation matrix P can be expressed as Pσ for some permutation σ, by just tracking
where it sends a generic vector (v1, . . . vn).

We first note the following property of permutation matrices:

Proposition 6 If P is a n × n permutation matrix with associated permutation σ, then
(v1, . . . vn) · P = (vσ−1(1), . . . vσ−1(n)).

Proof. On the HW!

Proposition 7 If P is a n×n permutation matrix with associated permutation σ, then P−1

is also a permutation matrix with associated permutation σ−1 (and furthermore is equal to
P T .)

Proof. On the HW!

Proposition 8 If P is a n× n permutation matrix, P is unitary; furthermore, if E is any
other unitary matrix, P · E is still unitary.

Proof. On the HW!

Given this, we can prove the following remarkably useful fact about adjacency matrices
of isomorphic graphs:

5



Proposition 9 If G1 and G2 are a pair of isomorphic graphs with adjacency matrices
A1, A2, then A1 and A2 are conjugate via a permutation matrix P : i.e.

A2 = PA1P
−1.

Proof. Suppose that G1 and G2 are isomorphic graphs, both with vertex set {1, . . . n}.
Then there is some permutation σ of {1, . . . n} that realizes this isomorphism (i.e. such
that (i, j) is an edge in A1 iff (σ(i), σ(j)) is an edge in A2.)

Let P be the associated permutation to this map σ; then, we have that

• PA1 is the matrix where we’ve taken each column of A1 and permuted its entries
according to σ : in other words, PA1 is A1 if we permute its rows by σ.

• Similarly, A1P
−1 is the matrix where we permute A1’s columns by (σ−1)−1 = σ, by

our earlier two lemmas.

• By combining these two results, PA1P
−1 is the matrix where we permute A1’s rows

by σ, and then permute the resulting matrices’ columns by σ again!

What does this mean? Well: we’ve started by taking any point (i, j) in A1, and have
sent it to (σ(i), σ(j)). But this means that we’ve sent the indicator function for the edge
(i, j) to the location (σ(i), σ(j))! In other words, we’ve sent A1 to A2: i.e. we’ve proven
A2 = PA1P

−1, as claimed.

One remarkable consequence of this is the following corollary:

Corollary 10 If G1 and G2 are isomorphic graphs, their adjacency matrices A1 and A2

have the same set of eigenvalues (counting multiplicity.)

Proof. Pick any permutation matrix P such that A2 = PA1P
−1. We know that A1 is

real-valued and symmetric; therefore, we can write it in the form EDET , for some unitary
matrix E and diagonal matrix of eigenvalues D. But this means that we’ve written

A2 = (P · E) ·D · (ET · P T )

= (P · E) ·D · (P · E)T .

But what have we done here? We’ve expressed A2 as D conjugated by a unitary matrix.
But this means that5 A2’s eigenvalues are precisely the entries on the diagonal of D! So
we’ve proven our claim.

This motivates us to make the following definition:

Definition. The spectrum of a graph G is the set of all of AG’s eigenvalues, counted with
multiplicity. For example, we say that the empty graph on 3 vertices, K3, has spectrum
{03}, where by 03 we mean that it has the eigenvalue 0 repeated three times.

5By a HW exercise!

6


	Motivation/Definitions
	Applications of the Adjacency Matrix: Counting Paths / Walks
	Adjacency Matrices and Isomorphism

