Homework 5

Week 1
Mathcamp 2011

The problems below are completely optional; attempt the ones that seem interesting to you! Easier exercises are marked with (-) signs; harder ones are marked by ($*$). Open questions are denoted by writing $(* *)$, as they are presumably quite hard.

1. (*) Prove Gasparian's theorem: A graph G is perfect if and only if for every induced subgraph H of G, we have

$$
\chi(H) \geq \frac{|V(H)|}{\alpha(H)}
$$

Hint: Proceed by induction on $|V(H)|$. By induction, you know that every induced subgraph of G is perfect; so it suffices to prove that $\chi(G)=\omega(G)$, for G a graph on the vertex set $\{1, \ldots n\}$. Now, proceed by contradiction: assume that $\chi(G)>\omega(G)$.
Prove that if this is true, then if U is any independent set in G, we have $\chi(G \backslash U)=$ $\omega(G \backslash U)=\omega(G)$.
Having done that let $A_{0}=\left\{u_{1}, \ldots u_{\alpha}\right\}$ be an independent set in G of size $\alpha=\alpha(G)$; for each u_{i}, let $A_{1+i \omega}, \ldots A_{\left(i+1_{\omega}\right.}$ be the ω-different color classes of a proper ω coloring of $G \backslash\left\{u_{i}\right\}$. As well, for each A_{i} there is a complete graph on ω vertices in $G \backslash A_{i}$: call this graph K_{i}.
Show that $K_{i} \cap A_{j}$ is empty for exactly one j.
From here (and this is the twist!), let J be the $\alpha \omega+1$ by $\alpha \omega+1$ matrix with 0's down its diagonal and 1's everywhere else; let A be the real $\alpha \omega+1 \times n$ matrix whose rows are the incidence vectors of the A_{i} 's with elements in $V(G)$; and let B be the real $n \times \alpha \omega+1$ matrix whose rows are the incidence vectors of the K_{i} 's with elements in $V(G)$.
Prove that

$$
J=A B
$$

Conclude that

$$
\chi(G) \omega(G)+1 \leq|V(H)|
$$

and thus that there is a contradiction.
2. Use the above theorem to prove that if G is a minimally imperfect graph on n vertices, then

$$
\chi(G) \alpha(G)+1=n .
$$

3. Prove any of the old problems! Alternately, if you've already done them all/want something tricky to think about, consider the following construction I mentioned on Monday:

1 Bonus: Nešetřil and Rödl's Construction

We state the construction here, and leave it to the reader to supply the proof:
Definition. A k-hypergraph $G=(V, \mathcal{E})$ consists of the following:

- V, a collection of vertices, and
- \mathcal{E}, a collection of subsets of V of size k, all of which are distinct.

Basically, this is a generalization of the idea of a graph, where we're saying that an edge consists of k elements, and not just 2. Simple graphs are just 2-hypergraphs, for instance.

Definition. A cycle in a k-hypergraph $G=(V, \mathcal{E})$ is a collection of edges $M_{1}, \ldots M_{n}$ such that $M_{i} \cap M_{i+1} \bmod n$ is nonempty, for every $1 \leq i \leq n$.

Definition. A k-hypergraph $G=(V, \mathcal{E})$ is said to be a-partite or a-colorable if and only if there is a way to color the vertices of G with a colors, $\{1,2, \ldots a\}$, such that no edge $E \in \mathcal{E}$ contains two or more vertices of the same color. We say that $\chi(G)=a$ if a is the smallest value such that G is a-colorable.

Definition. Let $G=(V, \mathcal{E})$ be a k-hypergraph with $\chi(G) \leq a, f$ be a proper a coloring of G, r be a fixed color from the set $\{1, \ldots a\}$, and K be the number of vertices colored r in G. Let $H=(W, \mathcal{F})$ be a K-hypergraph.
Then, define the r-amalgamation $(W, \mathcal{F}) *(V, \mathcal{E})$ of these two hypergraphs as the following a-colorable k-hypergraph (X, \mathcal{Y}) :

- Let V_{i} denote all of the vertices in V colored i under our coloring map f.
- Let $X_{r}=W$, and $X_{i}=V_{i} \times \mathcal{F}$, where this product is understood as the Cartesian set product.
- Let X, our vertex set, be the disjoint union of these X_{i} 's, and let g be the coloring of these vertices given by our subscripts.
- For every edge $F \in \mathcal{F}$, pick a bijection $\iota_{F}: X_{r} \rightarrow F$. It doesn't matter what you pick here, so long as we fix one for every edge.
- Finally, we say that a k subset Y of X is an edge in \mathcal{Y} if and only if the following holds: There are a pair of edges $E \in \mathcal{E}, F \in \mathcal{F}$ such that
- $Y^{\prime} \cap X_{r}=\iota_{F}\left(E \cap V_{r}\right)$, and
$-Y \cap X_{i}=\left(E \cap V_{i}, F\right)$.
This sounds kind of awful, but in reality all we're doing is taking $|\mathcal{F}|$ many identical copies of (V, \mathcal{E}), and identifying the copies of X_{r} with (W, \mathcal{F}).
With these definitions out of the way, we can finally proceed to our theorem:

Theorem 1 There are k-hypergraphs with chromatic number $\geq n$ and girth $\geq p$, for any k, n, p.

Proof. Fix any value of n and k : we prove our statement by inducting on p. For $p=1$ our statement is trivially true, as cycles of length 1 do not exist; now, assume that we've proven our claim for all $p^{\prime} \leq p$. We seek to construct a k-hypergraph with chromatic number $\geq n$ and no cycles of length $p+1$ or smaller.
Let $a=(k-1) n+1$. We inductively create a family of $a+1$ different a-colorable k-hypergraphs, as follows:

- Let $\left(V^{0}, \mathcal{E}\right)$ be the a-colored hypergraph defined by
$-V^{0}=\{1 \ldots a\}^{k} \times\{1, \ldots k\}$
$-V_{i}^{0}=\left\{\left(c_{1}, \ldots c_{k}, j\right): c_{j}=i\right\}$
$-\mathcal{E}=\left\{\left\{\left(c_{1}, \ldots c_{k}, 1\right),\left(c_{1}, \ldots c_{k}, 2\right), \ldots\left(c_{1}, \ldots c_{k}, k\right)\right\}:\right.$ the c_{i} 's are k distinct fixed colors. $\}$.
The upshot of this is that this graph is a-colorable, has no paths in it at all, and yet for any choice of k distinct colors has an edge with all of those colors in it.
- Given a graph $\left(\left\{V_{j}^{i}\right\}_{j=1}^{n+1}, \mathcal{E}\right)$, construct a new graph as follows:
- Let $\left|V_{i}^{i}\right|=K_{i}$.
- Using our inductive hypothesis, let $\left(W^{i}, \mathcal{F}^{i}\right)$ be a K_{i}-hypergraph without any cycles of length $\leq p$.
- Define $\left(\left\{V_{j}^{i+1}\right\}_{j=1}^{n+1}, \mathcal{E}\right)$ as the amalgamation $\left(W^{i}, \mathcal{F}^{i}\right) *\left(V^{i}, \mathcal{E}\right)$.

Running this process a times yields a graph $\left(\left\{V_{j}^{a+1}\right\}_{j=1}^{n+1}, \mathcal{E}\right)$. You can show that this graph has chromatic number $\geq n$ and girth $\geq p+1$ without much more difficulty!

