Perfect Graph Theory
 Instructor: Padraic Bartlett

 Homework 5
 Mathcamp 2011

The problems below are completely optional; attempt the ones that seem interesting to you! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard.

1. (*) Prove Gasparian's theorem: A graph G is perfect if and only if for every induced subgraph H of G, we have

$$\chi(H) \ge \frac{|V(H)|}{\alpha(H)}.$$

Hint: Proceed by induction on |V(H)|. By induction, you know that every induced subgraph of G is perfect; so it suffices to prove that $\chi(G) = \omega(G)$, for G a graph on the vertex set $\{1, \ldots n\}$. Now, proceed by contradiction: assume that $\chi(G) > \omega(G)$.

Prove that if this is true, then if U is any independent set in G, we have $\chi(G \setminus U) = \omega(G \setminus U) = \omega(G)$.

Having done that let $A_0 = \{u_1, \ldots, u_\alpha\}$ be an independent set in G of size $\alpha = \alpha(G)$; for each u_i , let $A_{1+i\omega}, \ldots, A_{(i+1\omega)}$ be the ω -different color classes of a proper ω coloring of $G \setminus \{u_i\}$. As well, for each A_i there is a complete graph on ω vertices in $G \setminus A_i$: call this graph K_i .

Show that $K_i \cap A_j$ is empty for exactly one j.

From here (and this is the twist!), let J be the $\alpha\omega + 1$ by $\alpha\omega + 1$ matrix with 0's down its diagonal and 1's everywhere else; let A be the real $\alpha\omega + 1 \times n$ matrix whose rows are the incidence vectors of the A_i 's with elements in V(G); and let B be the real $n \times \alpha\omega + 1$ matrix whose rows are the incidence vectors of the K_i 's with elements in V(G).

Prove that

$$J = AB.$$

Conclude that

$$\chi(G)\omega(G) + 1 \le |V(H)|,$$

and thus that there is a contradiction.

2. Use the above theorem to prove that if G is a minimally imperfect graph on n vertices, then

$$\chi(G)\alpha(G) + 1 = n.$$

3. Prove any of the old problems! Alternately, if you've already done them all/want something tricky to think about, consider the following construction I mentioned on Monday:

1 Bonus: Nešetřil and Rödl's Construction

We state the construction here, and leave it to the reader to supply the proof:

Definition. A k-hypergraph $G = (V, \mathcal{E})$ consists of the following:

- V, a collection of vertices, and
- \mathcal{E} , a collection of subsets of V of size k, all of which are distinct.

Basically, this is a generalization of the idea of a graph, where we're saying that an edge consists of k elements, and not just 2. Simple graphs are just 2-hypergraphs, for instance.

Definition. A cycle in a k-hypergraph $G = (V, \mathcal{E})$ is a collection of edges M_1, \ldots, M_n such that $M_i \cap M_{i+1 \mod n}$ is nonempty, for every $1 \le i \le n$.

Definition. A k-hypergraph $G = (V, \mathcal{E})$ is said to be *a*-partite or *a*-colorable if and only if there is a way to color the vertices of G with a colors, $\{1, 2, \ldots a\}$, such that no edge $E \in \mathcal{E}$ contains two or more vertices of the same color. We say that $\chi(G) = a$ if a is the smallest value such that G is a-colorable.

Definition. Let $G = (V, \mathcal{E})$ be a k-hypergraph with $\chi(G) \leq a$, f be a proper acoloring of G, r be a fixed color from the set $\{1, \ldots a\}$, and K be the number of vertices colored r in G. Let $H = (W, \mathcal{F})$ be a K-hypergraph.

Then, define the r-amalgamation $(W, \mathcal{F}) * (V, \mathcal{E})$ of these two hypergraphs as the following *a*-colorable *k*-hypergraph (X, \mathcal{Y}) :

- Let V_i denote all of the vertices in V colored i under our coloring map f.
- Let $X_r = W$, and $X_i = V_i \times \mathcal{F}$, where this product is understood as the Cartesian set product.
- Let X, our vertex set, be the disjoint union of these X_i 's, and let g be the coloring of these vertices given by our subscripts.
- For every edge $F \in \mathcal{F}$, pick a bijection $\iota_F : X_r \to F$. It doesn't matter what you pick here, so long as we fix one for every edge.
- Finally, we say that a k subset Y of X is an edge in \mathcal{Y} if and only if the following holds: There are a pair of edges $E \in \mathcal{E}, F \in \mathcal{F}$ such that
 - $-Y' \cap X_r = \iota_F(E \cap V_r), \text{ and}$ $-Y \cap X_i = (E \cap V_i, F).$

This sounds kind of awful, but in reality all we're doing is taking $|\mathcal{F}|$ many identical copies of (V, \mathcal{E}) , and identifying the copies of X_r with (W, \mathcal{F}) .

With these definitions out of the way, we can finally proceed to our theorem:

Theorem 1 There are k-hypergraphs with chromatic number $\geq n$ and girth $\geq p$, for any k, n, p.

Proof. Fix any value of n and k: we prove our statement by inducting on p. For p = 1 our statement is trivially true, as cycles of length 1 do not exist; now, assume that we've proven our claim for all $p' \leq p$. We seek to construct a k-hypergraph with chromatic number $\geq n$ and no cycles of length p + 1 or smaller.

Let a = (k - 1)n + 1. We inductively create a family of a + 1 different *a*-colorable *k*-hypergraphs, as follows:

- Let (V^0, \mathcal{E}) be the *a*-colored hypergraph defined by
 - $V^0 = \{1 \dots a\}^k \times \{1, \dots k\}$
 - $V_i^0 = \{(c_1, \dots c_k, j) : c_j = i\}$
 - $-\mathcal{E} = \{\{(c_1,\ldots,c_k,1), (c_1,\ldots,c_k,2), \ldots, (c_1,\ldots,c_k,k)\} : \text{the } c_i\text{'s are } k \text{ distinct fixed colors. } \}.$

The upshot of this is that this graph is *a*-colorable, has no paths in it at all, and yet for any choice of k distinct colors has an edge with all of those colors in it.

- Given a graph $(\{V_j^i\}_{j=1}^{n+1}, \mathcal{E})$, construct a new graph as follows:
 - Let $|V_i^i| = K_i$.
 - Using our inductive hypothesis, let (W^i, \mathcal{F}^i) be a K_i -hypergraph without any cycles of length $\leq p$.
 - Define $(\{V_j^{i+1}\}_{j=1}^{n+1}, \mathcal{E})$ as the amalgamation $(W^i, \mathcal{F}^i) * (V^i, \mathcal{E})$.

Running this process a times yields a graph $(\{V_j^{a+1}\}_{j=1}^{n+1}, \mathcal{E})$. You can show that this graph has chromatic number $\geq n$ and girth $\geq p+1$ without much more difficulty!