Perfect Graph Theory		Instructor: Padraic Bartlett
	Homework 2	
Week 1		Mathcamp 2011

The problems below are completely optional; attempt the ones that seem interesting to you! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard.

- 1. Let G be a graph such that $\chi(G \setminus \{x, y\}) = \chi(G) 2$, for all vertices in G. Show that G must be the complete graph.
- 2. (**) Suppose that G is a graph such that $\chi(G \setminus \{x, y\}) = \chi(G) 2$, for all pairs of **adjacent** vertices in G. Show that G must be the complete graph. (This has been resolved for $k \leq 5$, and is open for k = 6 and higher, though some results are known! These graphs are called **double-critical graphs**, as an aside.)
- 3. A **partially ordered set** P = (X, <) is a collection of vertices $\{x_1, \ldots, x_n\}$ that satisfies the following two properties:
 - Antisymmetry: if x < y, we do not have y < x.
 - **Transitivity**: if x < y and y < z, we have x < z.

Given a partially ordered set P = (X, <), we can construct the **comparability graph** G_P corresponding to this set, by having $V(G_P) = X$, and $E(G_P) = \{\{x, y\} : x < y$ or $y < x\}$. Show that every comparability graph is perfect.

- 4. In a partially ordered set P = (X, <), a **chain** is a sequence of elements $x_1 < \ldots < x_n$; conversely, an **antichain** is a set $S \subset X$ such that no two elements in S are comparable (i.e. if x < y, then either x or y (or both!) are not in S.) Prove **Dilworth's theorem**: if every antichain in P has less than m elements, then P can be written as the union of m chains.
- 5. (-) Use the above theorem to prove that the complement graphs of comparability graphs are also perfect.