Perfect Graph Theory

Homework 1

Week 1

Mathcamp 2011

Attempt the problems that seem interesting! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard.

- 1. (-) Show that if a graph G has chromatic number k, then it must have at least $\binom{k}{2}$ edges.
- 2. If a graph on *n* vertices has chromatic number $\leq r$, what's the most edges it can have? Is there a unique graph with this many edges? (Hint: consider the complete *r*-partite graphs, where each part has size $\sim r/n$.)
- 3. Let G be a k-chromatic graph with girth ≥ 6 , with vertex set $\{v_1, \ldots, v_n\}$. Construct a new graph G' as follows:
 - Let T be a set of kn vertices, $\{t_1, \ldots, t_{kn}\}$ with no edges between them.
 - Take $\binom{kn}{n}$ disjoint copies of G, one for every *n*-subset of $\{1, \ldots, kn\}$ and index them by these subsets: i.e. for any subset $\{i_1, \ldots, i_n\} \subseteq \{1, \ldots, kn\}$, make a subgraph $G_{\{i_1, \ldots, i_n\}}$.
 - Take each $G_{\{i_1,\ldots,i_n\}}$, and connect the vertices of G to the corresponding vertices in T given by G's indexing subset. In other words, throw in the edges $\{v_1, t_{i_1}\}, \{v_2, t_{i_2}\}, \ldots, \{v_n, t_{i_n}\}$ to our graph made by the the G's and the set T.

Show that this graph still has girth 6, as well as chromatic number ≥ 6 .

4. (-) Start with a P_2 and draw the next graph created by the above process.