Homework 1

Week 1
Mathcamp 2011

Attempt the problems that seem interesting! Easier exercises are marked with (-) signs; harder ones are marked by ($*$). Open questions are denoted by writing ($* *$), as they are presumably quite hard.

1. (-) Show that if a graph G has chromatic number k, then it must have at least $\binom{k}{2}$ edges.
2. If a graph on n vertices has chromatic number $\leq r$, what's the most edges it can have? Is there a unique graph with this many edges? (Hint: consider the complete r-partite graphs, where each part has size $\sim r / n$.)
3. Let G be a k-chromatic graph with girth ≥ 6, with vertex set $\left\{v_{1}, \ldots v_{n}\right\}$. Construct a new graph G^{\prime} as follows:

- Let T be a set of $k n$ vertices, $\left\{t_{1}, \ldots t_{k n}\right\}$ with no edges between them.
- Take $\binom{k n}{n}$ disjoint copies of G, one for every n-subset of $\{1, \ldots k n\}$ and index them by these subsets: i.e. for any subset $\left\{i_{1}, \ldots i_{n}\right\} \subseteq\{1, \ldots k n\}$, make a subgraph $G_{\left\{i_{1}, \ldots i_{n}\right\}}$.
- Take each $G_{\left\{i_{1}, \ldots i_{n}\right\}}$, and connect the vertices of G to the corresponding vertices in T given by G 's indexing subset. In other words, throw in the edges $\left\{v_{1}, t_{i_{1}}\right\},\left\{v_{2}, t_{i_{2}}\right\}, \ldots\left\{v_{n}, t_{i_{n}}\right\}$ to our graph made by the the G 's and the set T.

Show that this graph still has girth 6 , as well as chromatic number ≥ 6.
4. (-) Start with a P_{2} and draw the next graph created by the above process.

