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One property you may have noticed in day 2’s lecture was that everything that we char-
acterized as being perfect – complete graphs, bipartite graphs, the line graphs of bipartite
graphs – also had perfect complements! In the next two lectures, we will prove that this is
always the case; in other words, we will prove that a graph G is perfect if and only if its
complement G is.

1 The Perfect Graph Theorem: Preliminaries

The result that a graph is perfect if and only if its complement is perfect is called the
Perfect Graph Theorem. There are several proofs of it in existence; we will focus on the
way it was proven originally, by Lovász and Fulkerson in 1970.

First, we need to prove some preliminary results, which are interesting in their own
right:

Proposition 1 A graph is perfect if and only if every induced subgraph H has an indepen-
dent set that intersects every clique in H of maximal order (i.e. order ω(H).) In other
words, for any subgraph H, there’s an independent set I such that

ω(H − I) < ω(H).

Proof. As this is an if and only if statement, we must prove both directions.
Let G be a perfect graph. Because any induced subgraph of G is perfect, it suffices to

find I such that ω(G − I) < ω(G). Doing this is trivial, however: just take any χ(G) =
ω(G) coloring of G, and let I be one of the color classes used in this coloring. This set
is independent by definition; as well, because we’ve removed one color, G − I satisfies
ω(G− I) = χ(G− I) < χ(G) = ω(G). Thus, we have proven this direction of our claim.

Now, take a graph G such that every induced subgraph H ⊂ G has an independent set
IH intersecting every clique in H of maximal order. We seek to show that such a graph is
perfect, and do so by inducting on ω(G). As the only graphs with ω(G) = 1 are the edgeless
graphs, there is nothing to prove here; so we assume that ω(G) = n and that we’ve proven
our result for all values of n′ < n.

Let H be any induced subgraph of G, and let I be an independent set of vertices in H
such that ω(H − I) < ω(H). By our inductive hypothesis, H − I is perfect, and therefore
χ(H − I) = ω(H − I); so we can color H − I with ω(H − I)-many colors. Take any such
coloring, and extend it to a coloring of H by coloring I some other, new color; this gives
us a coloring of H with ω(H − I) + 1 many colors. Because ω(H − I) < ω(H), this means
that our coloring of H uses ≤ ω(H) many colors: i.e. that ω(H) ≤ χ(H). But this means
that ω(H) = χ(H).

As this holds for every subgraph H of G, we’ve proven that G is perfect, as claimed.
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Using this alternate characterization of perfect graphs, we can prove the following result,
which (in addition to being useful in our proof of the Perfect Graph Theorem) gives us a
remarkably useful way to create new graphs:

Theorem 2 A graph obtained from a perfect graph by replacing any of its vertices with a
perfect graph is still perfect.

Proof. First, we should say what we mean by “replacing a vertex with a graph:”

Definition. Given a graph G1, a vertex α ∈ V (G1), and another graph G2, we can define
the graph G∗ created by substituting G2 for α as the following:

• Vertex set of G∗: V (G1) \ {α}, unioned with V (G2).

• Edge set of G∗: {u,w} ∈ E(G∗) if and only if either {u,w} ∈ E(G1 \ {α}), {u,w} ∈
E(G2), or u ∈ V (G1 \ {α}), w ∈ V (G2), and there was an edge from u to α in E(G1).

Basically, this is the graph formed by taking G1 and replacing α with an entirely new graph
G2, with edges drawn to all of G2 whenever there were edges involving α.

Notice that this process can only increase the clique and chromatic number of the graph
G1.

Let G1, G2 be a pair of perfect graphs, α be a vertex in G1, and G∗ be the graph formed
by replacing α with G2. Consider any induced subgraph H of G1, with vertex set V1 ∪ V2,
V1 ⊂ V (G1), V2 ⊆ V (G2). Because both of the induced subgraphs on the sets V1 and V2 are
perfect, by definition, we can see that H is also a graph formed by taking a perfect graph
and replacing a vertex with another perfect graph.

Using our earlier proposition, then, it suffices to prove that for any such graph G∗, we
can find an independent set I of ω(G∗) vertices that interesects every maximal clique of G∗.
To construct this set, simply do the following:

• Take a ω(G1) coloring of G1, and let J be the color class of G1 that contains our
vertex α. Remove the element α from J .

• Using our earlier proposition, find an independent set K in the graph G2 that non-
trivially intersects every clique in G2 of order ω(G2).

• Let I = J ∪K. Notice that this set is clearly independent in G∗: there are no edges
between elements of J or elements of K by definition, as both are independent sets;
as well, there are no edges between elements of J and K, as α was colored the same
color as the elements in J , and we replaced α with G2 to make G∗.

Let L be any clique in G∗ with maximal size ω(G∗); it now suffices to show that L and
I intersect nontrivially. There are two cases:

1. L is contained entirely in G1 \ {α}. If this happens, then (because ω(G∗) ≥ ω(G1) =
χ(G1)), L must contain at least one vertex from every color class in G1 \ {α}. This
is because L is a clique, and therefore cannot contain two elements of the same color
under any proper coloring. This then means that L and J share an element in common,
and thus that L intersects I nontrivially.
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2. There are some vertices of L that lie within G2. In this case, because L is a clique of
maximal size, this portion of L that lies in G2 should be of maximal size for a clique
in G2: in other words, |L ∩ V (G2)| = ω(G2). By definition, then, we know that K
must intersect this clique, and thus that I = J ∪ K must also intersect this clique,
which is part of L.

Therefore, we’ve shown that any maximal clique intersects our independent set; thus, by
our earlier proposition, G∗ is perfect.
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