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We did a lot of things last lecture! We quickly recap them here:

• We defined the concept of a dominating function for a set of functions F ⊂ω ω, and
asked whether these things always existed for sets F with cardinality strictly between
ω and 2ω.

• To study this, we introduced a poset PF = {(ϕ,F0)}, where the ϕ’s are all functions
{1, . . . nφ} → ω and the sets F0 ⊂ F were all finite sets of “promises” that our
function φ would keep in the future. To make this idea concrete in our poset, we said
that (ϕ,F0) ≥ (ψ,F1) iff the following held:

– ψ was an extension of ϕ: i.e. dom(ϕ) ⊆ dom(ψ), and they agree wherever they’re
both defined.

– F0 ⊂ F1.

– ψ, thought of as an extension of ϕ, keeps all of ϕ’s promises on its newly-defined
values: i.e. ψ(m) > f(m), for any m ∈ (dom(ψ) \ dom(ϕ)), f ∈ F0.

• To get a better idea of how to turn this poset into a dominating function, we assumed
that we had some such dominating function and looked at what it told us about the
poset. Specifically, we looked at the set G of all pairs (ϕ,F0) such that ϕ was a finite
piece of g and g satisfied all of F0’s promises on values not yet defined by ϕ. This set
had two remarkable properties:

– It was a filter1.

– It had nontrivial intersection with all of the dense2 sets Df = {(ϕ,F0) : f ∈ F0}
and Dn = {(ϕ,F0) : n ∈ dom(ϕ)}

• Motivated by this, we suggested the following form of MA(κ), Martin’s axiom for a
given cardinal κ: If P is a poset and {Dα | α < κ < |2ω|} is a collection of < |2ω|
dense sets, then there exists a filter G ⊆ P such that G ∩Dα 6= ∅ for all α < κ.

• We then said two things about this axiom:

1. This axiom is awesome, because we can turn filters into functions!

2. This axiom is false.

1In a poset P, we say that a subset F is a filter iff it satisfies the following two properties:

∗ If p, q ∈ F , then there exists r ∈ F with r ≤ p, q.

∗ For all p, q ∈ P, if p ≤ q and p ∈ F , then q ∈ F .

2Given a poset P and a subset D of P, we say that D is dense iff for any p ∈ P, there exists a strengthening
q ≤ p such that q ∈ D.
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To open up our lecture today, we’re going to prove both of these things: that we can turn
filters into functions, and this axiom is blatantly false. For fun, let’s do them at the same
time!

1 The Axiom Is A Lie

Specifically, consider the following poset P and dense sets Dα, Dn:

• Elements of P are objects of the form φ, where φ is a function from {1, . . . nφ} to ω1,
the first uncountable ordinal. The ordering on P is ϕ ≥ ψ iff ψ is an extension of ϕ.

• For any α ∈ ω1, define Dα as the collection of all of the elements φ that have α in
their image.

• For any n ∈ ω, define Dn as the collection of all of the elements φ that have n in their
domain.

Suppose that our axiom above holds for ω1! Then there is some filter G that intersects all
of these dense sets. We want to do two things with it:

• Use it to build a function.

• Show that the function it built is full of fail.

Let’s do the first here. Given this filter G, pick for every n a pair ϕn ∈ G such that ϕn has
n in its domain: we know that these exist because G ∩Dn 6= ∅, for every n. Having done
this, define

g(n) = ϕn(n).

Now, notice a few things about this function g:

1. First, did it matter which function we picked when we chose our ϕn’s? No! This is
because if we take any two functions ϕn, ϕ

′
n with n in their domain, we know that

they have to have a common strengthening ψ, and therefore they had both better
agree at n!

2. Second, for any α ∈ ω1, pick some element ϕα in our filter that has α in its range.
(This exists because Dα ∩G is nonempty!) Let n be the value such that ϕα(n) = α.
Then, by our first observation, we know that g(n) = α, because our choice of ϕn
didn’t matter!

So. What did we do? We made a function (yay!) from ω to ω1 that, um, is surjective
(boo!) In other words, we demonstrated (1) that filters make functions, and (2) that our
proposed axiom is way too powerful to exist in its current form.
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2 Fixing It!

We still like our axiom, though! It certainly gives us a function that seems promising;
however, the issue with the above construction was that there were, in some sense “too
many poorly-behaved” functions in our poset. In other words, we had tons of things in
our poset that couldn’t be compared and were doing wildly different things (like hitting
different elements of ω1,) and we were somehow trying to assemble a function out of all of
them that would combine them together.

To fix this, we want to introduce a condition on our poset that stops this “too many
poorly-behaved” function phenomena from happening: in other words, we want to have our
poset have a bound on how many incompatible objects live in it. We do this by introducing
the following property:

Definition. In a poset P, we say that two elements p, q are compatible iff they have some
common refinement r ≤ p, q. Otherwise, we say that p and q are incompatible.

A poset P is said to have the countable chain condition, abbreviated CCC, if and
only if every antichain3 in P is countable.

To illustrate just what the countable chain condition is after, we study some sample
posets:

Proposition 1 The partial order PF we’ve been studying throughout this class satisfies the
CCC.

Proof. We study this in two parts.
First, recall that the functions ϕ are all maps from some finite set {0, . . . nϕ} to ω.

How many such functions exist? Well: for any n, there are only countably many maps
{0, . . . n} → ω. Therefore, if we take the union over all n, we have a countable union of
countable things, which is countable! So there are only countably many such ϕ.

But what does this mean? Well, take any antichain A in PF . Because any two elements
(ϕ,F0) and (ϕ,F1) have a common refinement (ϕ,F0∪F1), we know that any two elements
(ϕ,F0), (ψ,F1) in A must have ϕ 6= ψ. But this means that we have at most countably
many elements in A, as there are only countably many such functions.

Proposition 2 The partial order P on functions ω → ω1 we defined earlier in this lecture
does not satisfy the CCC.

Proof. Just take

A =
⋃
α∈ω1

{ϕα : dom(ϕα) = {0}, ϕα(0) = α}.

So: The CCC doesn’t upset the example we’re working on, but clearly disallows the
awful counterexample we found to our first draft of our axiom. Excellent! Let’s throw it in
our axiom:

3An antichain in a poset is a collection of elements that are all pairwise incompatible. Yes, the countable
chain condition is a statement about antichains. Yes, it certainly should have been called the countable
antichain condition. No, I have no idea why it is not.
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Axiom 3 (MA(κ), Martin’s Axiom for a cardinal κ:) If P is a nonempty poset with the
CCC and D = {Dα} is a collection of ≤ κ-many dense sets, then there exists a filter G ⊆ P
such that G ∩Dα 6= ∅ for all D ∈ D .

3 Fixed It!

To kind-of illustrate what’s going on MA(κ), let’s try plugging in some values of κ and
seeing what happens:

Theorem 4 MA(ω) is true.

Proof. Let P be our nonempty poset with CCC, and {Di}∞i=1 our collection of dense sets.
In order from each Di, using the density of the Di’s, pick an element pi such that

p0 ≥ p1 ≥ p2 ≥ . . .

Let

G = {x ∈ P : ∃ n s.t. x ≥ pn}.

We claim that this is a filter. Closed upwards is trivial, by its definition: so it suffices
to show that any two elements in it have a common refinement. Take any two elements
x, y ∈ G, and let px, py be the elements are respectively refinements of them. Then we have
that one of px, py is a refinement of the other, and thus (by transitivity) that x and y have
a common refinement in G.

(As an aside: even though this class is centered around applying MA(κ) for values of κ > ω,
in practice Martin’s axiom is frequently used in the form MA(ω), as it allows you to do
some fairly crazy things with countable models of ZFC! Talk to us in TAU if you’re curious.)

Theorem 5 MA(2ω) is false.

Proof. To see this, let F =ω ω, and consider our poset PF that we’ve been working with
thus far. For every f ∈ω ω, let Df be the dense set consisting of all of the pairs (ϕ,F0)
where f ∈ F0. As well, for every n let Dn be the dense set containing all of the pairs
(ϕ,F0), where n ∈ dom(ϕ).

Then, if there is a filter G that intersects all of these Df ’s, we can just do the same trick
we did in constructing our “bad” function earlier in class! Specifically:

• Using the dense sets Dn, find pairs (ϕn,F0,n) for every n such that n ∈ dom(ϕn), and
define a function g(n) = ϕn(n).

• As noted before, these choices of ϕn(n) didn’t really matter: any two possible choices
of ϕn(n) are the same, because they have a common refinement!

• To see why this might be an issue, for every f ∈ω ω pick (ϕf ,F0,f ) in our filter. For
any n /∈ dom(ϕf ), we know that (ϕf ,F0,f ) and (ϕn,F0,n) have a common refinement
(ψ,F1). By definition, we know that ψ(n) > f(n), and therefore that g(n) > f(n)
because our choices of ϕn(n)’s didn’t matter!
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So we’ve created a function g ∈ω ω that dominates . . . every function in ωω. Including itself.
Fail!

Theorem 6 MA(κ), for |ω| < κ < |2ω| is independent of the ZFC axioms.

(We don’t have space for a proof of this here, but interested students should find us during
TAU!)

Ok! That’s definitely some pleasantly axiom-like behavior; much better than our first
draft, which was just false. So: because it’s so beautiful, let’s assume that MA(κ) holds.
Given this, can we answer our dominating function question?

Theorem 7 Assume MA(κ) holds. Take any subset F ⊆ω ω. Then there is a dominating
function for F .

Proof. Basically, we’re going to perform the same tricks we used in our two disproofs earlier
to construct functions that were awful. But this time, it’s gonna work!

More formally:

• Again, use the dense sets Dn to find pairs (ϕn,F0,n) for every n such that n ∈
dom(ϕn). Define g(n) = ϕn(n).

• As noted twice before, these choices of ϕn(n) didn’t really matter: any two possible
choices of ϕn(n) are the same, because they have a common refinement!

• We want to show that this function g dominates every element of F . To do this, take
any f ∈ F , and (using the density of Df ) find a pair (ϕf ,F0,f ) in our filter such that
f ∈ F0,f .

• For any n /∈ dom(ϕf ), we know that (ϕf ,F0,f ) and (ϕn,F0,n) have a common re-
finement (ψ,F1). By definition, we know that ψ(n) > f(n), and therefore that
g(n) > f(n) because our choices of ϕn(n)’s didn’t matter! So g dominates f .

This time, we’ve just created a function g that dominates every element of F ! Win!

Excellent! So, in a certain very-specialized sense, we’ve just shown that assuming Mar-
tin’s axiom makes cardinalities of sets between ω and 2ω act “countable-ish:” in other words,
we’ve shown that whenever Martin’s axiom holds, we have that this property of countable
sets (being able to find dominating functions) is one that holds for κ-sets as well!

Perhaps surprisingly, this phenomena is not simply restricted to dominating functions!
You can use Martin’s axiom to prove that κ-cardinalities are like ω in lots of ways, including
the following:

• Assume MA(κ). Then, the union of κ-many sets of measure 0 is a set of measure 0.

• Assume MA(κ). Then |2κ| = |2ω|.

Beautiful, right?
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