Homework 5

Week 1

Mathcamp 2011

- 1. Show that if a graph G has chromatic number k, then it must have at least $\binom{k}{2}$ edges.
- 2. (*) What graphs on n vertices with chromatic number $\leq r$ has the most edges? Is there a unique such graph? (Hint: consider the complete r-partite graphs¹, where each part has size $\sim n/r$. How can you generalize these graphs when n does not divide r?)
- 3. (*) Suppose you have n fireflies on a sidewalk, such that no two fireflies are more than one foot away from each other. Show that if $n \ge 4$, there is at least one pair of fireflies within $1/\sqrt{2}$ of each other. (You can, in fact, show much more: there are at most $\lfloor n^2/3 \rfloor$ pairs of vertices that are not within $1/\sqrt{2}$ of each other, out of the n(n-1)/2total possible pairings.)
- 4. Prove that a bipartite graph has edge-chromatic number given by $\Delta(G)$.
- 5. (-) A graph is called **planar** if there is some way to draw it in the plane so that none of its edges overlap at spots that are not endpoints. Show that K_4 is planar (even though the normal way of drawing it has overlapping edges!)
- 6. Prove that the Petersen graph is not planar!
- 7. (*) The **four-color theorem**, in the language of graph theory, is the statement that any planar graph has chromatic number ≤ 4 . Prove that the snark theorem implies the four-color theorem.

¹The complete *r*-partite graph on vertex sets V_1, \ldots, V_r is the graph formed by connecting any two vertices whenever they come from different parts. These graphs are trivially *r*-colorable, and not colorable with any less than *r* colors as long as none of the V_i 's are empty.