Homework 4

Week 1

Mathcamp 2011

- 1. (*) Suppose that G is the graph with vertex set \mathbb{R}^2 , formed by connecting two points iff they are distance one from each other in the plane. Show that $4 \leq \chi(G) \leq 7$.
- 2. (**) Determine $\chi(G)$, for G the **unit distance plane graph** defined in the above example.
- 3. Let G be a k-chromatic graph with girth ≥ 6 , with vertex set $\{v_1, \ldots, v_n\}$. Construct a new graph G' as follows:
 - Let T be a set of kn vertices, $\{t_1, \ldots, t_{kn}\}$ with no edges between them.
 - Take $\binom{kn}{n}$ disjoint copies of G, one for every *n*-subset of $\{1, \ldots, kn\}$ and index them by these subsets: i.e. for any subset $\{i_1, \ldots, i_n\} \subseteq \{1, \ldots, kn\}$, make a subgraph $G_{\{i_1, \ldots, i_n\}}$.
 - Take each $G_{\{i_1,\ldots,i_n\}}$, and connect the vertices of G to the corresponding vertices in T given by G's indexing subset. In other words, throw in the edges $\{v_1, t_{i_1}\}, \{v_2, t_{i_2}\}, \ldots, \{v_n, t_{i_n}\}$ to our graph made by the the G's and the set T.

Show that this graph still has girth 6, as well as chromatic number ≥ 6 .

- 4. (-) Using the process above, start with a P_2 and draw the next few graphs created by the above process.
- 5. Find a construction that shows R(3, t+1) > 3t 1.
- 6. Use the picture below to prove that R(3,5) is 14:

