Homework 3

Week 1

Mathcamp 2011

- 1. (-) A graph G is called k-critical if $\chi(G) = k$. Show that every k-chromatic graph has a k-critical subgraph.
- 2. (-) Show that every k-critical graph is connected.
- 3. If G is k-critical, then the degree of every vertex in G is at least k 1.
- 4. (-) Show that if G is a k-critical graph, then $k \cdot (|V(G)| 1) \leq 2 \cdot |E(G)|$.
- 5. Let G be a graph such that $\chi(G \setminus \{x, y\}) = \chi(G) 2$, for all vertices in G. Show that G must be the complete graph.
- 6. (**) Suppose that G is a graph such that $\chi(G \setminus \{x, y\}) = \chi(G) 2$, for all pairs of **adjacent** vertices in G. Show that G must be the complete graph. (This has been resolved for $k \leq 5$, and is open for k = 6 and higher, though some partial results are known. To make this a solvable problem, simply prove the question for $k \leq 5$. Perhaps relevantly, these graphs are called **double-critical graphs**.)
- 7. Given a collection $I\{I_1, \ldots, I_n\}$ of intervals on the real line, define the **interval graph** G_I on the vertex set $\{v_1, \ldots, v_n\}$ by drawing an edge $\{v_i, v_j\}$ if and only if $I_i \cap I_j \neq \emptyset$. Show that any interval graph has $\chi(G) = \omega(G)$.
- 8. Prove that if G is a graph, then $\chi(G) \leq 1 + \max_{i=1}^{n} (\min\{\deg(v_i), i-1\})$.
- 9. (*) (Brook's theorem:) If G is a graph that's neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$. (Hint: First, prove this in the case that G has a vertex v with deg $(v) < \Delta(G)$, by finding an appropriate spanning tree of G and applying a greedy coloring. Then, consider the case where G has all of its vertices of degree k; how can you extend our earlier idea to work in this situation?)