Homework 3

Week 1
Mathcamp 2011

1. (-) A graph G is called k-critical if $\chi(G)=k$. Show that every k-chromatic graph has a k-critical subgraph.
2. (-) Show that every k-critical graph is connected.
3. If G is k-critical, then the degree of every vertex in G is at least $k-1$.
4. (-) Show that if G is a k-critical graph, then $k \cdot(|V(G)|-1) \leq 2 \cdot|E(G)|$.
5. Let G be a graph such that $\chi(G \backslash\{x, y\})=\chi(G)-2$, for all vertices in G. Show that G must be the complete graph.
6. (**) Suppose that G is a graph such that $\chi(G \backslash\{x, y\})=\chi(G)-2$, for all pairs of adjacent vertices in G. Show that G must be the complete graph. (This has been resolved for $k \leq 5$, and is open for $k=6$ and higher, though some partial results are known. To make this a solvable problem, simply prove the question for $k \leq 5$. Perhaps relevantly, these graphs are called double-critical graphs.)
7. Given a collection $I\left\{I_{1}, \ldots I_{n}\right\}$ of intervals on the real line, define the interval graph G_{I} on the vertex set $\left\{v_{1}, \ldots v_{n}\right\}$ by drawing an edge $\left\{v_{i}, v_{j}\right\}$ if and only if $I_{i} \cap I_{j} \neq \emptyset$. Show that any interval graph has $\chi(G)=\omega(G)$.
8. Prove that if G is a graph, then $\chi(G) \leq 1+\max _{i=1}^{n}\left(\min \left\{\operatorname{deg}\left(v_{i}\right), i-1\right\}\right)$.
9. (*) (Brook's theorem:) If G is a graph that's neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$. (Hint: First, prove this in the case that G has a vertex v with $\operatorname{deg}(v)<\Delta(G)$, by finding an appropriate spanning tree of G and applying a greedy coloring. Then, consider the case where G has all of its vertices of degree k; how can you extend our earlier idea to work in this situation?)
