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In the field of graph theory, there are several graphs which come up enough to where
we’ve given them names. We list them here, along with some of their properties:

1 Several Key Graphs

• The cycle graph Cn. The cycle graph on n vertices, Cn, is the simple graph on the
vertex set {v1, v2, . . . vn} with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}.
The cycle graphs Cn can be drawn as n-gons, as depicted below:

• The path graph Pn. The path graph on n vertices, Pn, is the simple graph on
the vertex set {v1, v2, . . . vn} with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}}.
The path graphs Pn can be drawn as paths of length n, as depicted below:

Every vertex in a Pn has degree 2, except for the two endpoints v1, vn, which have
degree 1. Pn contains n− 1 edges.

• The complete graph Kn. The complete graph on n vertices, Kn, is the simple
graph on the vertex set {v1, v2, . . . vn} that has every possible edge: in other words,
E(Kn) = {{vi, vj} : i 6= j}. We draw several of these graphs below:
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Every vertex in a Kn has degree n− 1, as it has an edge connecting it to each of the
other n−1 vertices; as well, a Kn has n(n−1)/2 edges in total in it, by the degree-sum
formula. (Explicitly: every vertex has degree n− 1 and there are n vertices, therefore
the sum of the degrees of Kn’s vertices is n(n− 1). We’ve shown that this quantity is
twice the number of edges in the graph; dividing by 2 then tells us that the number
of edges in Kn is n(n− 1)/2, as claimed.)

• The complete bipartite graph Kn,m. The complete bipartite graph on n + m
vertices with part sizes n and m, Kn,m, is the following graph:

– V (Kn,m) = {v1, v2, . . . vn, w1, w2, . . . wm}.
– E(Kn,m) consists of all of the edges between the n-part and the m-part; in other

words, E(Kn,m) = {(vi, wj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The vertices vi all have degree m, as they have precisely m edges leaving them (one to
every vertex wj); similarly, the vertices wj all have degree n. By either the degree-sum
formula or just counting, we can see that there are nm edges in Kn,m.

• The Petersen graph P The Petersen graph P is a graph on ten vertices, drawn
below:

The vertices in P all have degree three; by counting or the degree-sum formula, P has
15 edges.

2 The Concept of “Sameness”

In the graphs above, we’ve made a point of labeling all of the vertices in our graphs. We
do this because this is part of the definition of what a graph *is* – a collection of labeled
vertices and edges between them.
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But is this really what we want for our definition? For example, consider the following
two graphs:

These graphs are, in one sense, different; the first graph has an edge connecting 1 to 2,
where the second graph does not. However, in another sense, these graphs are representing
the same situation: they’re both depicting the graph sketched out by a pentagon!

For graphs like the ones in our menagerie, we don’t care so much about the labeling of
the vertices; rather, the interesting features of these graphs are the intersections of their
edges and vertices. In other words, we want to say that both of the graphs below are
“the” Petersen graph: even though they initially look rather different, there is a way of
“relabeling” the vertices on the second graph so that (i, j) is an edge in the first graph iff
it’s an edge in the relabeled second graph.

How can we do this? What notion can we introduce that will allow us to regard such
graphs as being the “same,” in a well-defined sense? Well, consider the following:

Definition. We say that two graphs G1, G2 are isomorphic if and only if there is a map
σ : V (G1)→ V (G2) such that

• σ matches each element of V (G1) to a unique element of V (G2), and vice-versa: in
other words, σ is a way of relabeling G1’s vertices with G2’s labels, and vice-versa.

• {vi, vj} is an edge in G1 if and only if {σ(v1), σ(v2)} is an edge in G2.

We will often regard two isomorphic graphs as being the “same,” and therefore refer to
graphs like Kn or the Petersen graph without specifying or worrying about what the vertices
are labeled.

A concept that’s much more interesting (given the idea of isomorphism) is the concept
of a subgraph, which we define below:
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Definition. Given a graph G and another graph H, we say that H is a subgraph of G if
and only if V (H) ⊂ V (G) and E(H) ⊂ E(G).

Example. The Petersen graph has the disjoint union of two pentagons C5 t C5 as a sub-
graph, which we shade in red below:

In general, when we ask if a graph H is a subgraph of a graph G, we won’t mention
a labeling of H’s vertices; in this situation, we’re actually asking whether there is *any*
subgraph of G that is isomorphic to H.

For example, one question we could ask is the following: what kinds of graphs contain
an triangle (i.e. a C3) as a subgraph? Or, more generally, what kinds of graphs contain an
odd cycle (i.e. a C2k+1) as a subgraph?

We answer this in the next section:

3 Classifying Bipartite Graphs

In our menagerie of graphs above, we defined the complete bipartite graph Kn,m. One
natural generalization of this graph is to the concept of bipartite graphs, which we define
below:

Definition. We call a graph G bipartite if and only if we can break the set V (G) up into
two parts V1(G) and V2(G), such that every edge e ∈ E(G) has one endpoint in V1(G) and
one endpoint in V2(G).

Alternately, we say that a graph is bipartite iff there is some way to color G’s vertices
red and blue – i.e. to take every vertex in G and assign it either the color blue or color red,
but not both or neither – so that every edge has one blue endpoint and one red endpoint.

Example. The following graph is bipartite, with indicated partition (V1, V2):
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However, there are graphs that are not bipartite; for example, C3, the triangle, is not
bipartite! This is not very hard to see: in any partition of C3’s vertices into two sets V1 and
V2, one of the two sets V1 or V2 has to contain two vertices of our triangle. Therefore, there
is an edge in C3 with both endpoints in one of our partitions; so this partition does not
make C3 bipartite. Because this holds for every possible partition, we can conclude that no
such partition exists – i.e. C3 is not bipartite!

In general, we can say much more:

Proposition 1 C2k+1 is not bipartite.

Proof. We will prove this proposition with a proof by contradiction. In other words, we
will assume that Cn is bipartite, and from there we’ll deduce something we know to be false;
from there, we can conclude that our assumption must not have been true in the first place
(as it led us to something false,) and therefore that Cn is not bipartite.

To do this: as stated, we’ll suppose for contradiction that C2k+1 is bipartite. Then,
there must be some way of coloring the vertices {v1, . . . v2k+1} of Cn red and blue, so that
no edge is monochrome (i.e. has two red endpoints or two blue endpoints.)

How do we do this? Well: look at vk+1. vk+1 has to be either red or blue: without any
loss of generality1, we can assume that it’s red. Then, because no edge in C1 is monochrome,
we specifically know that none of vk+1’s neighbors can be red: in other words, they both
have to be blue! So both vk and vk+2 are blue.

Similarly, we know that neither of vk or vk+2’s neighbors can be blue: so both vk−1 and
vk+3 have to be red! Repeating this process, we can see that

• vk+1 being red forces

• vk, vk+2 to be blue, which forces

• vk−1, vk+3 to be red, which forces

• vk−2, vk+4 to be blue, which forces

• . . .

• which forces v1, v2k+1 to both be the same color.

But there is an edge between v1 and vn in C2k+1! This contradicts the definition of bipartite:
therefore, we’ve reached a contradiction. Consequently, Cn cannot be bipartite.

This allows us to actually classify a large number of graphs as not being bipartite:

Proposition 2 If a graph G has a subgraph isomorphic to C2k+1, then G is not bipartite.

1The phrase “without loss of generality” is something mathematicians are overly fond of. In general, it’s
used in situations where there is some sort of symmetry to the situation that allows you to assume that a
certain situation holds: for example, in this use, we’re assuming that v1 is red because it has to be either
red or blue, and if it was blue we could just switch the colors “red” and “blue” through the entire proof.

5



Proof. Suppose that G contains a subgraph H that’s not bipartite. Then, for any coloring
of H’s vertices, there is some edge in H that’s monochrome. Therefore, because any coloring
of G’s vertices into two parts will also color H’s vertices, we know that any coloring of G’s
vertices with the colors red and blue will create a monochrome edge; therefore, G cannot
be bipartite.

Is this it? Or are there other ways in which a graph can fail to be bipartite? Surprisingly,
as it turns out, there isn’t:

Proposition 3 A graph G on n vertices is bipartite if and only if none of its subgraphs are
isomorphic to an odd cycle.

Proof. Our earlier proposition proved the “if” direction of this claim: i.e. if a graph is
bipartite, it doesn’t have any odd cycles as subgraphs. We focus now on the “only if”
direction: i.e. given a graph that doesn’t contain any odd cycles, we seek to show that it is
bipartite.

First, note the following definitions:

Definition. A graph G is called connected iff for any two vertices v, w ∈ V (G), there is
a path connecting v and w.

Definition. Given a graph G, divide it into subgraphs H1, . . . Hk such that each of the sub-
graphs Hi are connected, and for any two Hi, Hj ’s there aren’t any edges with one endpoint
in Hi and one endpoint in Hj . These parts Hi are called the connected components of
G; a graph G is connected if it has only one connected component.

Definition. For a graph G and two vertices v, w we define the distance d(v, w) between
v and w as the number of edges of the smallest path connecting v and w. For a connected
graph, this quantity is always defined, d(v, v) = 0, and d(v, w) > 0 for any v 6= w.

Take our graph G, and divide it into its connected components H1, . . . Hk. If we can
find a red-blue coloring of each connected component Hi that shows it’s bipartite, we can
combine all of these colorings to get a coloring of all of G; because there are no edges between
the connected components, this combined coloring would show that G itself is bipartite!

Therefore, it suffices to just show that any connected graph H on n vertices without
any odd cycles in it is bipartite. To do this, take any vertex y ∈ V (H), and construct the
following sets:

• N0 = {w : d(v, y) = 0}

• N1 = {w : d(v, y) = 1}

• N2 = {w : d(v, y) = 2}

• . . .

• Nn = {w : d(v, y) = n}
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First, notice that every vertex v shows up in at least one of these sets, as H is connected
and has n vertices (and thus, any path in H has length ≤ n.) Furthermore, no vertex shows
up in more than one of these sets, because distance is well-defined. Finally, notice that for
any x ∈ Nk and any path P given by y = v0e01v1e12 . . . ek−1,kvk = x, each of the vertices vj
lies in Nj . This is because each of these has a path of length j from y to vj (just take our
path and cut it off at vj), and has no shorter path (because if there was a shorter path, we
could use it to get from y to x in less than k steps, and therefore d(y, x) would not be k.)

Now, color all of the vertices in the even N -sets red, and all of the vertices in the odd
N -sets blue. We claim that there are no monochromatic edges.

To see this, take any edge {v1, v2} in our graph H. Let d(y, v1) = k and d(y, v2) = l,
P1 be a path of length k connecting v1 with y, and P2 be a path of length l connecting
v2 with y. These paths may intersect repeatedly, so take x to be the furthest-away vertex
from y that’s in both of these paths. Let P ′1 be the path that we get by starting P1 at x
and proceeding to v1, and P ′2 be the path that we get by starting P2 at x and proceeding
to v2.

There are two possiblities. Either x is one of v1 or v2, in which case (because there’s
an edge from v1 to v2) the distance from y to v1 is either one greater or one less than the
distance from y to v2. In either case, v1 and v2 have different colors (because our colors
alternated between red and blue as our distance increased,) so this edge is not monochrome.

Otherwise, x is neither v1 or v2. In this case, look at the cycle formed by doing the
following:

• Start at x, and proceed along P ′1.

• Once we get to v1, travel along the edge {v1, v2} .

• Now, go backwards along P ′2 back to x.

This is a cycle, because P ′1 and P ′2 don’t share any vertices in common apart from x. What
is its length? Well, the length of P ′1 is just d(y, v1) − d(y, x), the length of P ′2 is just
d(y, v2)− d(y, x), and the length of a single edge is just 1; so, the total length of this path
is

d(y, v1)− d(y, x) + d(y, v2)− d(y, x) + 1 = d(y, v1) + d(y, v2)− (2d(y, x) + 1).

We know that this cannot be odd, because our graph has no odd cycles; so the number
above is even! Because (2d(y, x) + 1) is odd, this means that d(y, v1) + d(y, v2) must also
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be odd; in other words, exactly one of d(y, v1), d(y, v2) can be odd ,and exactly one can be
even. But this means specifically that exactly one must be blue and one must be red (under
our coloring scheme,) so our edge must not be monochromatic.

Therefore, our graph has no monochromatic edges; so it’s bipartite!
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