
Flows in Graphs Instructor: Padraic Bartlett

Lecture 2: Combinatorial Theorems via Flows

Week 2 Mathcamp 2011

Last class, we proved the Ford-Fulkerson Min-Flow Max-Cut theorem, which said the fol-
lowing:

Theorem 1 Suppose that G is a graph with source and sink nodes s, t, and a rational
capacity function c. Then the maximum value of a flow is equal to the minimum value of a
cut.

Furthermore, we noted that if our capacity function was integer-valued, we could find
integral values for our maximal flows. In today’s lecture, we will show how this theorem
allows us to prove a number of classical theorems in combinatorics with almost no effort at
all!

1 Hall’s Marriage Theorem

To open up, we present a proof of Hall’s marriage theorem, one of the best-known results
in combinatorics, using the max-flow min-cut theorem:

Theorem 2 Suppose that G is a bipartite graph (V1, V2, E), with |V1| = |V2|. Then G has
a perfect matching1 iff the following condition holds:

∀S ⊆ V1, |S| ≤ |N(S)|.

Proof. We first notice that the condition above is trivially necessary for a perfect matching
to exist; indeed, if we had a subset S ⊆ V1 with |S| > |N(S)|, then there is no way to match
up all of the |S| elements of S along edges with elements in V2 without using some elements
more than once.

We now prove that our condition is sufficient, via the Max-Flow Min-Cut theorem. Take
our graph G, orient all of its edges so that they go from V1 to V2, add a source vertex s, a
sink vertex t, edges from s to all of V1, from all of V2 to t, and let c be a capacity function
that’s identically 1 on all of the edges s→ V1, t→ V2, and ∞ on all of the original edges in
G. By Ford-Fulkerson, there is a minimal cut on this graph: call it S. We trivially know
that c(S, S) ≤ n, as there is a n-cut given by simply setting S = {s}; we seek to show that
c(S, S) is in fact equal to n.

Let X = S ∩ V1. Because the capacity of all of the edges originally in G is infinite,
we know that any minimal cut cannot contain half of any such edges; therefore, we have
N(X) ⊆ S ∩ V2.

1A perfect matching in a bipartite graph G is a collection of disjoint edges M that contains all of the
vertices in G. In a sense, it is a way to “match” all of the vertices in V1 to the vertices in V2.

1

But this means that

c(S, S) =
∑

x∈S,y∈S

c(x, y)

=
∑

x∈(S∩{s}),y∈(S∩V1)

c(x, y) +
∑

x∈(S∩V2),y∈(S∩{t})

c(x, y)

≤ n− |X|+ |N(X)|
≤ n− |X|+ |X|
= n.

So any minimal cut has capacity n; therefore, there is a flow with value n. Such a flow
sends one unit to each vertex in V1, and sends one unit from each vertex in V2 to t; therefore,
by Kirchoff’s law, the edges marked 1 in G by such a flow form a perfect matching of G’s
vertices.

2 Menger’s Theorem

We now continue with a classical theorem of Menger:

Theorem 3 Let s, t be a pair of distinct vertices in an undirected graph G. Then, the
minimal number of edges needed to separate2 s from t is equal to the maximal number of
edge-disjoint paths connecting s to t.

Proof. Let s, t be the source and sink nodes of G, respectively, replace each of G’s undi-
rected edges {x, y} with pairs of edges (x, y), (y, x), and let c be a capacity function on G
that assigns 1 to every edge. Let f be a maximal flow on G, and S be a corresponding
minimal cut.

Our flow f clearly defines the maximal number of edge-disjoint paths from s to t, by
identifying edges as being in a path iff f is 1 on them. Similarly, S clearly corresponds to
a minimal separating set of edges; therefore, because the value of any maximum flow is the
value of a minimal cut, we’ve completed our proof.

3 Dilworth’s Theorem

Finally, we close with a third example of how flows can make difficult combinatorial theorems
easier, in the form of Dilworth’s theorem! We state this theorem here:

2A set K of edges separates two vertices s, t, iff there are no paths from s to t that do not use elements
in K.

2

Theorem 4 Suppose that a every antichain3 in a partially ordered set4 P has less than m
elements. Show that P can be written as the union of m chains5.

Unlike our earlier theorems, this one does not seem to be quite as amenable to a flow-
based attack. In particular, our language of “maximal flows” seems to be good at giving
us edge-disjoint paths: however, in Dilworth’s theorem, we actually want vertex-disjoint
paths, because we’re trying to decompose P into chains (which are made out of vertices,
not the inequalities linking them.)

How can we do this? Well: what we really want to do is have a flow that, instead of
having some sort of maximum upper bound, has a minimal lower bound: i.e. that has to
send at least one unit of flow into every vertex! Our desire to do this motivates the following
extension of the Max-Flow Min-Cut theorem, which we put on the HW:

Theorem 5 Suppose that G is a directed graph with source and sink nodes s, t. Suppose
further that G comes with a pair of rational capacity functions l, u : E(G)→ Q∪ {∞} such
that l(e) ≤ u(e), and a feasible flow f0 (i.e a flow such that l(e) ≤ f(e) ≤ u(e).) Then
there is a feasible flow f on G and cut S on G such that

• for any x ∈ S, y /∈ S, we have f(x, y) = u(x, y), and

• for any x /∈ S, y ∈ S, we have f(x, y) = l(x, y).

(In a sense, this flow realizes the “maximal” value of any cut, if we regard the capacity of
a cut S here as

∑
x∈S,y/∈S u(x, y)−

∑
x/∈S,y∈S l(x, y).)

Proof. HW!

This stated, we now turn to our proof of Dilworth’s theorem.

Proof. Let P = {X,<} be a partially ordered set. We turn P into a directed graph G, as
follows:

1. For each element x ∈ X, create a pair of vertices x1, x2 in our graph.

2. Create an edge (x1, x2) between each such pair of vertices.

3. Whenever x < y in our partially ordered set, add the edge (x2, y1) to our graph.

4. Let A = {a ∈ X : 6 ∃ y s.t. a < y}, and B = {b ∈ X : 6 ∃ y s.t. y < b}. Create two new
vertices s, t, and add the directed edges (s, b1) and (a2, t) for all of the elements in A,
B respectively.

3An antichain is a set S ⊂ P such that no two elements in S are comparable: i.e. if x < y, then either
x or y (or both!) are not in S.

4A partially ordered set P = (X,<) is a collection of vertices {x1, . . . xn} that satisfies the following
two properties:

• Antisymmetry: if x < y, we do not have y < x.

• Transitivity: if x < y and y < z, we have x < z.

5A chain in a partially ordered set P is a sequence of elements x1 < . . . < xn ordered by P .

3

5. Define an upper capacity bound u on G’s edges by having u(x1, x2) = −1 and u(e) = 0
for all other edges; define a lower capacity bound u on G’s edges by setting it to be
−∞ everywhere.

To generate a starting flow on G, simply start at G and repeatedly take paths from s
to t that involve some new edges every time, until you have a path covering of G: with this
done, simply set f(e) = −1 · (the number of times e is used in these paths).

Apply the Max-Flow Min-Cut theorem here to get a maximal flow f and cut S with
respect to our boundary conditions. Now, notice the following: by definition, we have

• for any x ∈ S, y /∈ S, we have f(x, y) = u(x, y), and

• for any x /∈ S, y ∈ S, we have f(x, y) = l(x, y).

In specific, we have that because l(x, y) = −∞, there are no edges (x, y) where x /∈ S, y ∈ S,
as this would mean that our cut would have capacity −∞ (and there are clearly cuts with
noninfinite capacity, namely the cut S = {s}.) As a consequence, we can see that any path
starting in S and going to S has exactly one edge (x, y) with x ∈ S, y /∈ S: this is because
having two such edges would require a trip from S to S, which we just said was impossible.

Why do we care? Well: this gives us a really useful way to count the number of paths in
our graph. Specifically, let C be the collection of paths induced by our flow f (i.e. take the
collection of edges s → t marked by f with the multiplicity given by −f , and decompose
these into |f |-many paths from s to t.) How many paths in C are there – i.e. what is |f |?

Well: as we noted earlier each path has precisely one “crossing” edge from S to S. So
there are precisely ∑

x∈S,y/∈S

−f(x, y)

many paths in C.
But we know that because f is maximal, we have f(x, y) = u(x, y) on all of these crossing

edges. So, notice that u is only −1 on edges of the form (x1, x2) and 0 otherwise. Let Q be
the collection of all of the edges in C that are crossing edges, and Q′ be the collection of
corresponding elements in X to these edges. Notice that because∑

x∈S,y/∈S

−f(x, y) =
∑
x∈Q
−f(x1, x2) =

∑
x∈Q

1,

the number of elements in Q is the number of paths.
As it turns out, Q is also an antichain; this is because any path in our graph through

a node q ∈ Q contains the crossing edge (q1, q2). If such a path were to contain two such
elements of Q, it would necessarily contain an edge from S to S, which we said cannot exist:
therefore, no two elements of Q lie in the same chain, and thus they form an antichain.

So we have a path decomposition of P with as many paths as elements in an antichain!
This tells us that, in specific, there is a path decomposition of P with as many paths as a
maximal antichain, which is what we sought to prove.

4

	Hall's Marriage Theorem
	Menger's Theorem
	Dilworth's Theorem

