
Flows in Graphs Instructor: Padraic Bartlett

Lecture 1: The Max-Flow Min-Cut Theorem

Week 2 Mathcamp 2011

Graphs are often used as ways to visualize networks: i.e. a collection of pipes carrying
water, or wires carrying current, or cables carrying data. How can we model this?

1 Basic Definitions

Well: if we’re modelling some notion of flow, we’re intuitively thinking of a way of assigning
weights to all of our edges, modelling the amount of (fluid/current/data) travelling through
each edge, along with a direction that this flow is travelling. In other words, if we have a
directed graph G containing an edge (x, y) ∈ E(G), we want to assign a value k = f(x, y)
to the ordered pair (x, y) to indicate that a flow of k units of current is travelling from x to
y on this edge.

What other rules should we ask our flows to obey? Well: often, we like to study flows
where we don’t have any “buildup” of fluids or current at most nodes: i.e. at most of the
nodes in our graph, the total flow into that vertex is the flow out of that vertex. This
property is called Kirchoff’s law, and can be mathematically stated for any vertex v as∑

w∈N+(v)

f(v, w)−
∑

w∈N−(v)

f(w, v) = 0.

We define a flow as any map on a graph G that obeys this property at every node other
than two special nodes, the source and sink:

Definition. A real-valued flow on a graph G with a pair of distinguished vertices s, t is
a map f : E → R that satisfies the following property: for any vertex v 6= s, t, we have∑

w∈N+(v)

f(v, w)−
∑

w∈N−(v)

f(w, v) = 0.

We call such directed graphs G with distinguished vertices s, t networks. Often, we
will ask that our flows take on only positive values.

Given this idea of flow, there are a number of natural extensions we can make. For
example, we often want to study graphs where the edges are representing pipes with some
fixed capacity: in other words, you might want to find out what flows are feasible on a
graph where all of the edges can carry at most one gallon per minute (say.) This motivates
the following definitions:

Definition. A capacity function on a graph G is a function c : E(G) → [0,∞], that
assigns capacity values to every edge. Given a graph G and capacity function c, we say that
a flow f on G is feasible if 0 ≤ f(x, y) ≤ c(x, y), for every {x, y} ∈ E(G).

1

So: given a graph G with some given capacity function c, how “big” of a feasible flow
can we define on G? In other words, if we’re thinking of G as a collection of pipes with
certain capacities, what’s the most current we can pump out of the source vertex?

At first, answering this question seems difficult. Consider the graph below, with capac-
ities written on all of the edges:

It appears that any flow on this graph cannot pump any more than ≤ 2 units of flow out of
the source node, as the two “bridge” edges (bolded here in green) seem like they’re acting
as a “bottleneck” for our flows – any flow that goes from s to t will have to cross this bridge,
and because it has total capacity 2 we clearly can only have at most 2 units of flow leaving
s as well.

Is this the only constraint we have? Are there other constraints? Also, how can we find
these “bridges” in general?

2 The Max-Flow Min-Cut Theorem

First, we want to generalize this idea of “bridges” and “maximal flow” that we discussed
above. We do this with the following definitions:

Definition. For a connected graph G with a flow f , the value of f , |f |, is the total amount
of current leaving the source node s : i.e.

∑
y∈N+(s) f(s, y)−

∑
y∈N−(s) f(s, y).

More generally, given a subset U of V (G), we say that the total flow out of U is just
the sum ∑

x∈U,y/∈U

f(x, y)−
∑

x∈U,y/∈U

f(y, x).

We denote this as f+(U) − f−(U). In this notation, the value of f is just f+(s) − f−(s);
as well, we can reformulate Kirchoff’s law as demanding that f+(v)− f−(v) = 0, at every
vertex that’s neither the source nor the sink.

2

For a connected graph G, a cut is a collection of vertices S such that s ∈ S and t /∈ S.
The capacity of any cut S, c(S), is the sum∑

x∈S,y/∈S

c(x, y).

We mentioned above that these cuts gave us bounds on how big the value of any feasible
flow can be. We prove this here with two propositions:

Proposition 1 If G is a graph with source and sink nodes s, t, capacity function c, and
feasible flow f , and S is any cut on G containing s, then the value of f is given by f(S).

Proof. First, notice that the net flow out of S, f(S), is given by the sum of the net flows
out of the nodes of S: i.e.

f+(S)− f−(S) =
∑
v∈S

f+(v)− f−(v).

Why is this? Well, for any edge (x, y), we either have

• x, y /∈ S, in which case it shows up in neither the left or right sums,

• x, y ∈ S, in which case it doesn’t show up on the left and shows up twice on the right,
once positively in f+(x) and once negatively in f−(y),

• x ∈ S, y /∈ S, in which case it shows up exactly once positively on both sides, or

• x /∈ S, y ∈ S, in which case it shows up exactly once negatively on both sides.

Applying Kirchoff’s law, we can see that all of these pairs f+(v) − f−(v) are 0 except
for when v = s, and thus that we have f(S) = f+(s)− f−(S) = |f |.

Corollary 2 The value of any flow f is bounded above by the capacity of any cut S.

Proof. By the above, we have

|f | = f+(S)− f−(S) ≤ f+(S) ≤ c(S).

Surprisingly, it turns out that this bound is tight! In other words, the maximum value
amongst all feasible flows is given by the minimal capacity amongst all cuts C. This is the
Ford-Fulkerson Max-Flow Min-Cut theorem, which we state and prove here:

Theorem 3 Suppose that G is a graph with source and sink nodes s, t, and a rational
capacity function c. Then the maximum value of a flow is equal to the minimum value of a
cut.

Proof. We prove our claim here via the Ford-Fulkerson algorithm, defined as follows:

1. Input: a feasible flow f . Let R be the set currently given by the single source vertex
{s}, and S be the subset of R currently defined as ∅.

3

2. Iteration: Pick any vertex v ∈ R that’s not in S. For every vertex w /∈ R with
f(v, w) < c(v, w), add w to R. (Mentally, think of these as the edges in our graph
that “could have more flow on them.”) Also, add any vertex w /∈ R where f(w, v) > 0
(mentally, think of these as the edges in our graph that are “flowing backwards” into
R.)

Once you’ve done this search process over all of v’s neighbors, add v to the set S (the
“searched” set.) Repeat this step until R = S.

3. If the sink vertex t is not in R at this time, terminate. Otherwise, if it is in R, then
there is a path P = s, e1, v1, . . . , en, t from s to t, along (unoriented) edges where we
either have f(ei) < c(ei), if we’re traversing this edge in the oriented direction, or
f(ei) > 0, if we’re traversing it backwards. Call such a path an augmenting path
for f , and let ε = min{minoriented |c(ei)−f(ei)|,minreversed |f(ei)|}. Now, (as the name
suggests,) augment f along this path: i.e. define f ′, our new flow, by

• f ′(y, z) = f(y, z)+ε, for (y, z) any edge involved in our path P that we traversed
in that order.

• f ′(z, y) = f(z, y)−ε, for (y, z) any edge involved in our path P that we traversed
in reverse order.

• f ′(e) = f(e), for all other edges e.

This new flow has value ε-greater than our old flow. Go to (1) with our new flow f ′,
and repeat this process.

Because ε is at least 1/a, where a is the least-common denominator of the capacities of
the edges, we know that this process will terminate in finitely many steps.

If we input the feasible flow f0 that’s identically 0 on all edges, this process will return
two things for us: a flow f , and a set S with the properties that

1. S contains s and not t, and thus is a cut, and

2. S is specifically the collection of vertices v in V (G) for which there is a path P from
s to v, on which f(e) < c(e).

This means that for any pair x ∈ S, y /∈ S, we have f(x, y) = c(x, y) (otherwise, we would
have added y to R and thus to S:) similarly, for any pair x /∈ S, y ∈ S we have f(x, y) = 0
(as otherwise we would have added this vertex.) But this means that

f(S) = f+(S)− f−(S) = f+(S) = c(S).

Therefore, by our earlier corollary, we know that (1) this flow f has maximum value, and
(2) this cut S has minimum capacity.

Two important things to recognize in the above theorem are the following:

• If our capacity function c is finite and integer-valued, then the maximum flow we
create is integer-valued! Again, this is because ε is guaranteed to be integral if the
capacity function is integral.

4

• We could in fact scale this result to work for “negative” flows and capacity functions,
by just adding and subtracting off constants at the start/end of applying our theorem.
This is kind of a useful thing to do, in many situations.

These properties – specifically, the second one – are quite remarkable, and are in fact
what we’ll focus on for the next two lectures. Specifically: using this idea, we will go on to
prove a number of (otherwise-tricky!) combinatorial theorems, like Hall’s marriage theorem,
Menger’s theorems, and Dilworth’s theorem, with almost no effort at all!

5

	Basic Definitions
	The Max-Flow Min-Cut Theorem

