The Unit Distance Graph
Lecture 4: "Nice" Colorings

Week 1 of 1
Mathcamp 2010

1 Glossary

Surface A surface is just a collection of points that "locally" looks like \mathbb{R}^{2}; explicitly, a surface is a shape that you can get by gluing pairs of edges on a regular $2 n$-polygon together.

Metric A metric, loosely speaking, is a function that defines the concept of distance on a space.

Embedding An embedding of a graph G on a surface S is a way of drawing G on S, so that all of the vertices of G are points on S and the edges of G are curves drawn on S.

Planar embedding A planar embedding is an embedding in which the curves for any two edges never intersect (except at possibly their endpoints.)

Nice n-coloring Take a surface with metric (S, d) and a graph G planarly embedded on S. A nice n-coloring is a way of painting the faces of G with n colors, so that no two faces within distance 1 of each other get the same color.

Simple closed curve A continuous map $\gamma:[0,1] \rightarrow S$ such that $\gamma(0)=\gamma(1)$ and for any other pair of points $t, s \in(0,1), \gamma(t) \neq \gamma(s)$.

Contractible A simple closed curve γ is called contractible if it bounds a region in S that "looks like" an open disk. Rigorously: γ is contractible iff there is a continuous map $F:[0,1]^{2} \rightarrow S$ such that $F(s, 0)=F(s, 1)=\gamma(0), F(0, t)=\gamma(t), F(1, t)$ is the constant function $\gamma(1)$, and $F(s, t)$ never intersects γ whenever $s \neq 0$ and $t \neq 0,1$.

Interior The interior of a contractible simple closed curve γ is the region that γ bounds that looks like an open disk: in other words, it's the region of S where $F(s, t)$'s values live.

Area For a subset A of our surface with metric (S, d), area (A) is defined to be the maximal number of pairwise disjoint open discs of radius $1 / 2$ that we can completely fit in A. (This is not a completely standard definition, but it is useful here.)
$D_{n}(x)$ For a graph G and vertex $x \in V(G)$, the set $D_{n}(x)$ consists of all of the elements $v \in G$ that are distance n from x : i.e. all vertices that have a walk of length n to x, but no walks of shorter length to x.

Locally finite A graph G is called locally finite if $D_{1}(x)$ is finite, for every $x \in G$.

Locally Hamiltonian A graph is called locally Hamiltonian if for every $x \in G$, there is a cycle in G made out of the vertices of $D_{1}(x)$.

2 Thomassen's 7CT

So: recall how we tiled the plane with hexagons to show that $\chi\left(\mathbb{R}^{2}\right) \leq 7$:

A natural question to ask, after seeing this coloring, is the following: can we do any better? In other words, suppose that we consider coloring the faces of some planar graph G on \mathbb{R}^{2}, and we concern ourselves with not just avoiding monochromatic edges of length 1 , but making sure that no two faces that lie within distance 1 of each other receive the same color. Can we come up with a 6 -coloring?

The answer (perhaps surprisingly) is no! In fact, suppose that we don't concern ourselves with just the plane, but in fact with any surface S with a metric d. Then, we have the following property:

Theorem 1 Suppose that S is a surface and k is a natural number with the following properties:

1. Every noncontractible simple closed curve has diameter ≥ 2.
2. Every simple closed curve C with diameter <2 is such that the area of $\operatorname{int}(C)$ is $\leq k$.
3. The diameter of S is $\geq 12 k+30$.

Take any graph G that can be planarly embedded on S. Then we need at least 7 colors to nicely color the faces of G.

Proof. We first open with a remarkably useful lemma:
Lemma 2 If G is a connected, locally finite, locally Hamiltonian graph with at least 13 vertices, then G has a vertex of degree at least 6 .

Proof. Suppose not: that all of the vertices of G have degree ≤ 5. Then, we have one of the following five cases (follow along with pen and paper!):

- $\Delta(G)=1$. In this case, G consists of pairs of edges and isolated vertices, and is clearly not connected; a contradiction.
- $\Delta(G)=2$. In this case, because G is connected, it must be C_{13}; consequently, G is not locally Hamiltonian (as the neighbors of any two vertices aren't connected.)
- $\Delta(G)=3$. Pick x such that $\operatorname{deg}(x)=3$, and look at $D_{1}(x), x$'s neighbors. Because G is locally Hamiltonian, these are all connected in a cycle; hence, we have that $x \cup D_{1}(x)$ is a tetrahedron, and thus disconnected from the rest of G.
- $\Delta(G)=4$. Pick x such that $\operatorname{deg}(x)=4$, and again look at $D_{1}(x)$. Because G is still locally Hamiltonian, we have that $D_{1}(x)$ is connected in a cycle, and thus that each vertex in $D_{1}(x)$ can be connected to at most one vertex in $D_{2}(x)$. Because we have more than 5 vertices in G, at least one vertex $y \in D_{1}(x)$ is connected to some vertex $z \in D_{2}(x)$. Then, because $D_{1}(y) *$ also* has to form a cycle, we have that there are edges from z to both of y 's neighbors in $D_{1}(x)$; consequently, no other vertices than z can live in $D_{2}(x)$. But this means that for $D_{1}(z)$ to contain a cycle, we need to have z connected to all four elements in $D_{1}(x)$; so all of the vertices of G have degree 4 , and thus no more vertices can be added! But this graph has only 6 vertices; a contradiction.
- $\Delta(G)=5$. Again, pick x such that $\operatorname{deg}(x)=5$. Because of the edges used in our locally Hamiltonian condition, each element of $D_{1}(x)$ has no more than two neighbors in $D_{2}(x)$. As well, each element in $D_{2}(x)$ has at least two neighbors in $D_{1}(x)$ and two more in $D_{2}(x)$, again because of the locally Hamiltonian condition; so each element in $D_{2}(x)$ can be connected to at most 1 element in $D_{3}(x)$. Suppose that there is some element in $D_{3}(x)$, and call it z; then, again by the locally-Hamiltonian property, z has at least three neighbors in $D_{2}(x)$.
So: because there are at most 5 vertices in $D_{1}(x)$, there are likewise at most 5 vertices in $D_{2}(x)$ by degree considerations; thus, before we start looking at edges to $D_{3}(x)$, we know that there are already 4 edges tied up for every vertex in $D_{2}(x)$. So, there are at most 5 edges spare from $D_{2}(x)$ to $D_{3}(x)$; as every vertex uses at least 3 edges, this means that $D_{3}(x)$ has at most 1 vertex. Using our locally-Hamiltonian property for the last time, we have at last that $D_{4}(x)$ must be empty, and thus that G can have at most $\left|D_{0}(x)\right|+\left|D_{1}(x)\right|+\left|D_{2}(x)\right|+\left|D_{3}(x)\right|=1+5+5+1=12$ vertices, a contradiction.
(It bears noting that the above logic also shows that the icosahedron is the unique connected locally finite, locally Hamiltonian graph that's 5-regular.)

So: why did we prove this lemma?
Well: let's proceed by contradiction. Assume we have a pair (G, S) that satisfies our conditions and admits a nice 6-coloring. Consider the dual graph $M(G, S)$ (sometimes called the map graph) to our graph G, formed by taking G 's faces as our vertices and connecting two such vertices iff their faces intersect in G.

Take any vertex x in M, and let C_{x} be the cycle of edges in G that bounds the face marked by x. Fix some orientation of C_{x}, and let $x_{1}, \ldots x_{n}$ be the list of faces in G that we visit when going around C_{x}.

Suppose for a moment that all of these vertices were distinct, for every x. Then we would have that the neighbors of $x, x_{1} \ldots x_{n}$, form a cycle in M for every x-i.e. that M is locally Hamiltonian! Thus, by our lemma, we would have that M must contain a vertex v of degree at least 6 .

Examine the face corresponding to v in G. It must have diameter <1, if we're in a nice coloring; as well, it needs to have at least six neighboring faces. Consequently, because we've given G a nice coloring, v 's face and all of its neighboring faces must be different colors - i.e. we need at least 7 colors to nicely color G !

The rub, then, lies in the fact that it's entirely possible for a vertex to be repeated in C_{x}, as we show below:

So: what do we do? Let's start by considering some such "bad" case: i.e. let x, y be vertices such that y shows up in two nonconsecutive entries of C_{x}. Let e_{i} and e_{j} be two such nonadjacent edges, and let R be a simple closed curve in the faces bounded by C_{x} and C_{y}, that crosses each of e_{i}, e_{j} precisely once and crosses no other edges. Because the diameter of any face is <1, the diameter of R is <2 and thus R is contractible.

Consequently, by the Jordan curve theorem, R divides M into two pieces: the interior of R and the exterior of R. As a result, we have that that $M-\{x, y\}$ is disconnected!

How many vertices live inside of R ? Well: for every i-colored vertex z in M that lies in $\operatorname{int}(R)$, pick some point $s_{z} \in S$ from inside of the face labeled by z. Because the area contained by R is $\leq k$, there are at most k such vertices; finally, because we're assuming that we have a nice 6 -coloring, we have at most 6 such collections of colored vertices. Consequently, $\operatorname{int}(R)$ contains at most $6 k$ vertices.

So: look at the connected components of the graph $M-\{x, y\}$. Each one that corresponds to the interior of some R has $\leq 6 k$ vertices, as we've just shown: how about the rest? Well, first notice the following pair of observations:

- There is a component of $M-\{x, y\}$ that is *not* the interior of some R. This is because the diameter of any such R is ≤ 2, and each such R starts somewhere in the face given by x; consequently, because the diameter of our space is $\geq 12 k+30$, we must have some faces not contained within a R.
- This component is in fact unique! To see this, let $e_{1}, \ldots e_{n}$ list the edges in order around C_{x}, and $f_{1}, \ldots f_{m}$ list the edges in $C_{x} \cap C_{y}$ in the order that they appear in when going around C_{x}. Each pair of these edges f_{2}, f_{1+1} define a curve R like the one we've considered above. Thus, for each such curve $R_{i, i+1}$ through f_{i} and f_{i+1},
we have that R contains all of the faces between some e_{i}^{\prime} and some e_{j}^{\prime} in either the clockwise or counter-clockwise orientation, depending on how R goes around x.
So: what would happen if there were two nonadjacent edges e_{i}, e_{j} in C_{x} such that a loop R never goes around them? Well, because y is a single continuous face, we know that there couldn't be a $x y$-loop on at least one side of the e_{i}, e_{j} 's: so the faces corresponding to e_{i} and e_{j} are connected. So there's exactly 1 connected component that's not in the interior of some R.

So: call such a pair $\{x, y\}$ a 2-separator, and denote the collection of all of the interior components of loops R constructed above by writing $\operatorname{int}(M, x, y)$. Take the collection of all such pairs $\{x, y\}$ where $M-\{x, y\}$ is disconnected. Discard any pairs $\{x, y\}$ where either x or y lie strictly within $\operatorname{int}(M, u, v)$ for some other pair $\{u, v\}$. Call this collection of pairs we now have a collection of maximal 2-separators, and call the edge $x y$ of any maximal 2-separator a crucial edge.

Consider the subgraph H formed in G by deleting $\operatorname{int}(M, x, y)$ for every maximal 2separator $\{x, y\} . H$ is connected, as the shortest path between any two elements in H will never go through $\operatorname{int}(M, x, y)$ (as it's always faster to go through the edge $x y$ than anything in the interior.) As well, because M has diameter $>12 k+30$, we know that there must be at least 7 vertices in H (as the diameter of any $\operatorname{int}(M, x, y)$ is always bounded by 4 , as it's constrained by the diameters of the loops R in x, y.)

So: we claim that this graph H is locally Hamiltonian! To see this: take any vertex $x \in H$, and look at its neighbors $x_{1}, x_{2}, \ldots x_{k}$. If these are all distinct, we're done! So suppose not; that $x_{i}=x_{j}$, for $i \neq j, j \pm 1$. Then the pair $\left\{x, x_{j}\right\}$ is a 2 -separator; because it's still in our graph, it's a maximal 2-separator, and thus we removed the interior $\operatorname{int}\left(M, x, x_{j}\right)$ from our graph. Thus, we know in fact that all of the vertices between x_{i} and x_{j} are the same and equal to x_{j} ! So in fact we have that this is a cycle.

So: by the lemma, because this is a connected locally finite, locally Hamiltonian graph, either it has a vertex of degree 6 (in which case we're done, as before) or every vertex is of degree ≤ 5 and there are no more than 12 vertices. Consequently, we have no more than 30 edges in our graph H.

So: how do we turn H back into M ? Well: all we have to do is simply "glue" the interiors of $\operatorname{int}(M, x, y)$ back in along the crucial edges $\{x, y\}$.

We claim that doing this increases the diameter of H to $<12 k+30$. Why? In the worstcase scenario, we attached two $\operatorname{int}(M, x, y)^{\prime} s$ to vertices that are on completely opposite sides of H, which has diameter <30. Each of $\operatorname{int}(M, x, y)$'s components have $<6 k$ vertices; consequently, in the worst-case scenario we have a path in our graph from a vertex in one component to a vertex in another component of length $12 k+30$, which forces our surface to have strictly smaller diameter (as the diameter of any face is <1.)

Thus, we have that S has diameter $<12 k+29$, a contradiction. So a vertex of degree 6 must exist! Consequently, no nice 6 -coloring can exist, as claimed.

