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1 ZFC and ZFS: Different Models of Set Theory

On yesterday’s problem set, we defined the following:

Axiom 1 (Axiom of Choice) For every family Φ of nonempty sets, there is a choice
function

f : Φ→
⋃
S∈Φ

S,

such that f(S) ∈ S for every S ∈ Φ.

So: back when this was first proposed as an axiom in 1910, many mathematicians fought
it, on two grounds:

• Constructivist and intutionist mathematicians opposed it, on the grounds that it
posits the existence of functions without any clue whatsoever as to how to find them!

• Many other working mathematicians just thought it was a true statement; i.e. that
AC was a trivial consequence of any logical framework of mathematics.

Surprisingly enough, however, Paul Cohen and Kurt Gödel proved that the axiom of choice
is independent of the Zermelo-Fraenkel axioms of set theory, the current framework within
which we do mathematics: i.e. that it is its own proper axiom! Pretty much all of modern
mathematics accepts the Axiom of Choice; it’s a pretty phenomenally useful axiom, and
most fields of mathematics like to be able to call on it when pursuing nonconstructive proofs.

There are, however, a number of disconcerting “paradoxes” that arise from working
within ZFC, the framework of axioms given by the Zermelo-Fraenkel axioms + the axiom
of choice:

• The well-ordering principle: the statement that any set S admits a well-ordering1

Consequently, there’s a way to order the real numbers so that they “locally” look like
the natural numbers! Strange.

1A well-ordering on a set S is a relation ≤ such that the following properties hold:

– (antireflexive:) a ≤ b and b ≤ a implies that a = b.

– (total:) a ≤ b or b ≤ a, for any a, b ∈ S.

– (transitive:) a ≤ b, b ≤ c implies that a ≤ c.
– (least-element:) Every nonempty subset of S has a least element.
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• The Banach-Tarski paradox: there’s a way to chop up and rearrange a sphere into
two spheres of the same surface area.

• The existence of nonmeasurable sets: There are bounded subsets of the real line to
which we cannot assign any notion of “length,” given that we want length to be a
translation-invariant, nontrivial, and additive function on R.

Motivated by these strange results, Solovay (a set theorist) introduced the following two
axioms:

• (ACℵ0 , the countable axiom of choice): For every countable family Φ of nonempty
sets, there is a choice function

f : Φ→
⋃
S∈Φ

S,

such that f(S) ∈ S for every S ∈ Φ.

• (LM, Lebesgue-measurability): Every bounded set in R is measurable.

Theorem 2 (Solovay’s Theorem) There are models of mathematics in which ZF + LM
+ ACℵ0 all hold.

For brevity’s sake, we will denote ZF + the axiom of choice by ZFC, and ZF + LM +
ACℵ0 by ZFS.

2 χ(R2) in ZFS

This discussion provokes a fairly natural question for this class: does χ(R2) depend on the
axiom of choice? In other words, is χZFC(R2) different from χZFS(R2)?

Well: as we currently don’t know what χZFC(R2) even *is,* answering this question
completely seems to be a bit beyond our reach. However, the following two examples
suggest that their chromatic numbers may be quite distinct:

Theorem 3 Let G be the graph defined as follows:

• V (G) = R,

• E(G) = {(s, t) : s− t−
√

2 ∈ Q}.

Then χZFC(G) = 2.

Proof. Let

S = {q + n
√

2|q ∈ Q, n ∈ Z}.

Define an equivalence relation ∼ on R as follows: x ∼ y iff x − y ∈ S. Let {Ei}i∈I be the
collection of all of the equivalence classes of R under ∼. Using the axiom of choice, pick
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one element yi from each set Ei, and collect all of these elements in a single set E. Define
the function f : R→ R as follows:

f(x) = the unique element yi in E such that x ∼ yi.

Now define a two-coloring of R as follows: for any x ∈ R, color x 1 iff there is an odd
integer n such that

x− f(x)− n
√

2 ∈ Q;

similarly, color x 2 iff there is an even integer n such that

x− f(x)− n
√

2 ∈ Q.

By construction, we know that x ∼ f(x); so x−f(x) is always of the form q+n
√

2, and thus
we always have exactly one of the two possibilities above holding. As well, if we examine
any edge {x, y}, we have to have x − y = q +

√
2, for some q; i.e. x ∼ y! So f(x) = f(y),

and thus we have that

x− y = q +
√

2

⇒(x− f(x)) + (y − f(y)) = q +
√

2;

consequently, if both x− f(x)− n
√

2 and y − f(y)−m
√

2 ∈ Q, we must have one of n,m
be odd and the other be even.

Theorem 4 For G as above, χZFS(G) > ℵ0.

Proof. Consider the following lemma:

Lemma 5 If A ⊂ [0, 1] and A doesn’t contain a pair of adjacent vertices in G, then A has
measure2 0.

Proof. So: consider the following rather large hammer from analysis, which we will use
without proof:

Theorem 6 (Lebesgue Density Theorem) If a set A has nonzero measure, then there is an
interval I such that

µ(A ∩ I)

µ(I)
≥ 1− ε,

for any ε > 0.

2The measure of a set S is defined as the infimum of the sum
∑

(bi, ai), where we range over all collections
of intervals {(ai, bi)} such that

⋃
(ai, bi) ⊃ S. We denote this number by writing µ(S)
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So: choose any set A of measure > 0, and pick I such that

µ(A ∩ I)

µ(I)
≥ 99/100,

for instance. Then, pick q ∈ Q such that
√

2 < q <
√

2 + µ(I)/100, and define B =
{x− q +

√
2 : x ∈ A}. Then B has been translated by at most 1/100-th of the length of I:

so we have that

µ(B ∩ I)

µ(I)
≥ 98/100.

So, because (A ∩ I) ∪ (B ∩ I) ⊂ I, and both of these sets are almost all of I, we know
that they must overlap! In other words, there’s an element y in both A and B – but this
means that there’s an element y in A such that y = x − q +

√
2, with x *also* in A! i.e.

there’s a pair of elements x, y in A with an edge between them!

So: with this, our proof is pretty straightforward. Suppose that we could color R with
ℵ0-many colors, and that the collection of colors used is given by the collection {Ai}∞i=1. Let
Bi = Ai∩ [0, 1]; then we have that all of the Bi are disjoint and

⋃
Bi = [0, 1]. Consequently,

we have that
∑
µ(Bi) = µ([0, 1]) = 1; so at least one of the Bi’s have to have nonzero

measure! This contradicts our above lemma; consequently, no such ℵ0-coloring can exist.
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