The Unit Distance Graph
 Lecture 3: $\chi\left(\mathbb{R}^{2}\right)$ and the Axiom of Choice

Instructor: Paddy

Week 1 of 1
Mathcamp 2010

1 ZFC and ZFS: Different Models of Set Theory

On yesterday's problem set, we defined the following:
Axiom 1 (Axiom of Choice) For every family Φ of nonempty sets, there is a choice function

$$
f: \Phi \rightarrow \bigcup_{S \in \Phi} S
$$

such that $f(S) \in S$ for every $S \in \Phi$.
So: back when this was first proposed as an axiom in 1910, many mathematicians fought it, on two grounds:

- Constructivist and intutionist mathematicians opposed it, on the grounds that it posits the existence of functions without any clue whatsoever as to how to find them!
- Many other working mathematicians just thought it was a true statement; i.e. that AC was a trivial consequence of any logical framework of mathematics.

Surprisingly enough, however, Paul Cohen and Kurt Gödel proved that the axiom of choice is independent of the Zermelo-Fraenkel axioms of set theory, the current framework within which we do mathematics: i.e. that it is its own proper axiom! Pretty much all of modern mathematics accepts the Axiom of Choice; it's a pretty phenomenally useful axiom, and most fields of mathematics like to be able to call on it when pursuing nonconstructive proofs.

There are, however, a number of disconcerting "paradoxes" that arise from working within ZFC, the framework of axioms given by the Zermelo-Fraenkel axioms + the axiom of choice:

- The well-ordering principle: the statement that any set S admits a well-ordering ${ }^{11}$ Consequently, there's a way to order the real numbers so that they "locally" look like the natural numbers! Strange.

[^0]- The Banach-Tarski paradox: there's a way to chop up and rearrange a sphere into two spheres of the same surface area.
- The existence of nonmeasurable sets: There are bounded subsets of the real line to which we cannot assign any notion of "length," given that we want length to be a translation-invariant, nontrivial, and additive function on \mathbb{R}.

Motivated by these strange results, Solovay (a set theorist) introduced the following two axioms:

- $\left(\mathrm{AC}_{\aleph_{0}}\right.$, the countable axiom of choice): For every countable family Φ of nonempty sets, there is a choice function

$$
f: \Phi \rightarrow \bigcup_{S \in \Phi} S
$$

such that $f(S) \in S$ for every $S \in \Phi$.

- (LM, Lebesgue-measurability): Every bounded set in \mathbb{R} is measurable.

Theorem 2 (Solovay's Theorem) There are models of mathematics in which $Z F+L M$ $+A C_{\aleph_{0}}$ all hold.

For brevity's sake, we will denote ZF + the axiom of choice by ZFC, and ZF $+\mathrm{LM}+$ $\mathrm{AC}_{\aleph_{0}}$ by ZFS.

$2 \chi\left(\mathbb{R}^{2}\right)$ in ZFS

This discussion provokes a fairly natural question for this class: does $\chi\left(\mathbb{R}^{2}\right)$ depend on the axiom of choice? In other words, is $\chi^{Z F C}\left(\mathbb{R}^{2}\right)$ different from $\chi^{Z F S}\left(\mathbb{R}^{2}\right)$?

Well: as we currently don't know what $\chi^{Z F C}\left(\mathbb{R}^{2}\right)$ even ${ }^{*}$ is, ${ }^{*}$ answering this question completely seems to be a bit beyond our reach. However, the following two examples suggest that their chromatic numbers may be quite distinct:

Theorem 3 Let G be the graph defined as follows:

- $V(G)=\mathbb{R}$,
- $E(G)=\{(s, t): s-t-\sqrt{2} \in \mathbb{Q}\}$.

Then $\chi^{Z F C}(G)=2$.
Proof. Let

$$
S=\{q+n \sqrt{2} \mid q \in \mathbb{Q}, n \in \mathbb{Z}\} .
$$

Define an equivalence relation \sim on \mathbb{R} as follows: $x \sim y$ iff $x-y \in S$. Let $\left\{E_{i}\right\}_{i \in I}$ be the collection of all of the equivalence classes of \mathbb{R} under \sim. Using the axiom of choice, pick
one element y_{i} from each set E_{i}, and collect all of these elements in a single set E. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)=\text { the unique element } y_{i} \text { in } E \text { such that } x \sim y_{i}
$$

Now define a two-coloring of \mathbb{R} as follows: for any $x \in \mathbb{R}$, color $x 1$ iff there is an odd integer n such that

$$
x-f(x)-n \sqrt{2} \in \mathbb{Q} ;
$$

similarly, color $x 2$ iff there is an even integer n such that

$$
x-f(x)-n \sqrt{2} \in \mathbb{Q} .
$$

By construction, we know that $x \sim f(x)$; so $x-f(x)$ is always of the form $q+n \sqrt{2}$, and thus we always have exactly one of the two possibilities above holding. As well, if we examine any edge $\{x, y\}$, we have to have $x-y=q+\sqrt{2}$, for some q; i.e. $x \sim y$! So $f(x)=f(y)$, and thus we have that

$$
\begin{aligned}
& x-y=q+\sqrt{2} \\
\Rightarrow & (x-f(x))+(y-f(y))=q+\sqrt{2} ;
\end{aligned}
$$

consequently, if both $x-f(x)-n \sqrt{2}$ and $y-f(y)-m \sqrt{2} \in \mathbb{Q}$, we must have one of n, m be odd and the other be even.

Theorem 4 For G as above, $\chi^{Z F S}(G)>\aleph_{0}$.
Proof. Consider the following lemma:
Lemma 5 If $A \subset[0,1]$ and A doesn't contain a pair of adjacent vertices in G, then A has measur $4^{2} 0$.

Proof. So: consider the following rather large hammer from analysis, which we will use without proof:

Theorem 6 (Lebesgue Density Theorem) If a set A has nonzero measure, then there is an interval I such that

$$
\frac{\mu(A \cap I)}{\mu(I)} \geq 1-\epsilon
$$

for any $\epsilon>0$.

[^1]So: choose any set A of measure >0, and pick I such that

$$
\frac{\mu(A \cap I)}{\mu(I)} \geq 99 / 100
$$

for instance. Then, pick $q \in \mathbb{Q}$ such that $\sqrt{2}<q<\sqrt{2}+\mu(I) / 100$, and define $B=$ $\{x-q+\sqrt{2}: x \in A\}$. Then B has been translated by at most $1 / 100$-th of the length of I : so we have that

$$
\frac{\mu(B \cap I)}{\mu(I)} \geq 98 / 100
$$

So, because $(A \cap I) \cup(B \cap I) \subset I$, and both of these sets are almost all of I, we know that they must overlap! In other words, there's an element y in both A and B - but this means that there's an element y in A such that $y=x-q+\sqrt{2}$, with x *also* in A ! i.e. there's a pair of elements x, y in A with an edge between them!

So: with this, our proof is pretty straightforward. Suppose that we could color \mathbb{R} with \aleph_{0}-many colors, and that the collection of colors used is given by the collection $\left\{A_{i}\right\}_{i=1}^{\infty}$. Let $B_{i}=A_{i} \cap[0,1]$; then we have that all of the B_{i} are disjoint and $\bigcup B_{i}=[0,1]$. Consequently, we have that $\sum \mu\left(B_{i}\right)=\mu([0,1])=1$; so at least one of the B_{i} 's have to have nonzero measure! This contradicts our above lemma; consequently, no such \aleph_{0}-coloring can exist.

[^0]: ${ }^{1}$ A well-ordering on a set S is a relation \leq such that the following properties hold:

 - (antireflexive:) $a \leq b$ and $b \leq a$ implies that $a=b$.
 - (total:) $a \leq b$ or $b \leq a$, for any $a, b \in S$.
 - (transitive:) $a \leq b, b \leq c$ implies that $a \leq c$.
 - (least-element:) Every nonempty subset of S has a least element.

[^1]: ${ }^{2}$ The measure of a set S is defined as the infimum of the sum $\sum\left(b_{i}, a_{i}\right)$, where we range over all collections of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$ such that $\bigcup\left(a_{i}, b_{i}\right) \supset S$. We denote this number by writing $\mu(S)$

