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Lecture 2: Coloring Q"
Week 1 of 1 Mathcamp 2010

1 Glossary

In these definitions, n denotes a natural number, G is some abelian group, h is an element
of G, and S is a subset of G.

n-coloring A n-coloring of an abelian group G is just a partition of G’s elements into n
different sets.

h-alternating A n-coloring of G is said to be h-alternating iff for every g € GG, the elements
9,9+h,g+h+h=g+2h,...g+(n—1)h

are all different colors. (by kh, where k € Z and h € G, we mean the element of G
denoted by adding k copies of h together.)

S-alternating A n-coloring of G is said to be S-alternating iff it’s h-alternating for every
hes.

weakly n-free A subset S C G is called weakly n-free iff for any collection {mp,}nes of
integers indexed by the elements of S, with only finitely many elements not equal to
0, we have the following implication:

<th.h=0> = <th50 modn>

heS heS

2 Coloring Q?

Theorem 1 If S is weakly n-free, then there is a S-alternating n-coloring of G.

Proof. Let H be the subgroup generated by S. Color H by dividing it into subsets
B, ... B, defined as follows:

Bk—{th-h

heS

thzk mod n}

heS

Because S is weakly n-free, we know that these sets partition H. So: do the same thing
to all of H’s cosets! This generates a n-coloring of GG that’s S-alternating, by construction;
so we're done!

Theorem 2 If there is a S-alternating 2-coloring of G, then S is weakly 2-free.



Proof. So: a S-alternating 2-coloring is just a partition of G into two sets Bi, By so that
for any g € G,h € S, exactly one of {g,g + h} lives in B; and the other lives in Bs.
Consequently, we have that for any b € B;, h € S, b+ mh € B; iff m is even!

So: specifically consider the identity element 0. Suppose that 0 € B;. Then, we know
that 0 + mph = mph € B; iff my, is even; more generally, we know that in fact

Z mph € By iff Z my, 1S even,
hes hes

by considering parity arguments. But this is exactly the definition for weakly 2-free!

Theorem 3 We have the following results for the chromatic numbers of rational spaces:
X(Q%) =2,x(Q@%) = 2,x(Q") > 2.
Proof. So: by our earlier work, it suffices to show that
S={(z,y) €Qz®* +y* =1,z =1o0r y >0}

is weakly 2-free, as this will give us a S-alternating 2-coloring of Q — i.e. a partition of Q2
into two parts By, B such that if x € By, no points that are distance 1 from x are also in
B!

So: look at solutions of 22 +y? =1 in (Q*)Q: these are in fact pairs of numbers of the
form (a/c,b/c) where (a,b,c) is a primitive Pythagorean triple. Consequently, we always
have that exactly 1 of a,b are odd, one is even, and c is odd.

So: think of S as something of the form {(1,0), (0,1)} U {(ai,b;)};2;, and examine any
possible sum of the form

n(1,0) +7(0,1) + Z mi(ai/ci, bi/ci) = (0,0)
=1

where all but finitely many of the m; are zero. Then, we have that specifically
oo
nz:mZ ~a;/c; =0
i=1
and

00
T+Zmi bz/Cl =0.
=1

So: let ¢ be the product of all of the ¢; where m; is nonzero. This is a finite odd number
(b/c all of the ¢;’s are odd; thus, if we multiply through by 2, we have

x
aniai =0 mod?2

i=1



and

T+Zmi'bi50 mod 2.
i=1

Adding these together, we have that

o0 (e.)
n—i—r—i—Zmiai—i—Zmi-biEO mod 2
i=1 i=1

o0
:>n+T+Zmi(ai+bi) =0 mod 2.
i=1

But in any pythagorean triple (a,b,c), a + b is odd! So we have in fact that

[o¢]
n+r+2m¢50 mod 2;
i=1

i.e. that S is weakly 2-free.

A similar result on Pythagorean quadruples (a, b, ¢, d) that says that exactly one of a, b, ¢
are odd and d is odd will give us the result for Q3.

Conversely: for Q*: we have that

1115 1111
= =) =1(=,2,%,2) =1(0,0,1,0) — 2 1) =
3(6’6’2’6) (2727272> (0707 70) (070707 ) (0707070)7

while3—1—1—2= —1%# 0 mod 2. So the unit sphere here is not weakly 2-free, and thus
Q* is not 2-colorable.
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