The Unit Distance Graph Instructor: Paddy

Lecture 2: Coloring \mathbb{Q}^{n}

Week 1 of 1
Mathcamp 2010

1 Glossary

In these definitions, n denotes a natural number, G is some abelian group, h is an element of G, and S is a subset of G.
n-coloring A n-coloring of an abelian group G is just a partition of G 's elements into n different sets.
h-alternating A n-coloring of G is said to be h-alternating iff for every $g \in G$, the elements

$$
g, g+h, g+h+h=g+2 h, \ldots g+(n-1) h
$$

are all different colors. (by $k h$, where $k \in \mathbb{Z}$ and $h \in G$, we mean the element of G denoted by adding k copies of h together.)

S-alternating A n-coloring of G is said to be S-alternating iff it's h-alternating for every $h \in S$.
weakly n-free A subset $S \subset G$ is called weakly n-free iff for any collection $\left\{m_{h}\right\}_{h \in S}$ of integers indexed by the elements of S, with only finitely many elements not equal to 0 , we have the following implication:

$$
\left(\sum_{h \in S} m_{h} \cdot h=0\right) \quad \Rightarrow \quad\left(\sum_{h \in S} m_{h} \equiv 0 \quad \bmod n\right)
$$

2 Coloring \mathbb{Q}^{2}

Theorem 1 If S is weakly n-free, then there is a S-alternating n-coloring of G.
Proof. Let H be the subgroup generated by S. Color H by dividing it into subsets $B_{1}, \ldots B_{n}$ defined as follows:

$$
B_{k}=\left\{\sum_{h \in S} m_{h} \cdot h \mid \sum_{h \in S} m_{h} \equiv k \quad \bmod n\right\}
$$

Because S is weakly n-free, we know that these sets partition H. So: do the same thing to all of H 's cosets! This generates a n-coloring of G that's S-alternating, by construction; so we're done!

Theorem 2 If there is a S-alternating 2-coloring of G, then S is weakly 2-free.

Proof. So: a S-alternating 2-coloring is just a partition of G into two sets B_{1}, B_{2} so that for any $g \in G, h \in S$, exactly one of $\{g, g+h\}$ lives in B_{1} and the other lives in B_{2}. Consequently, we have that for any $b \in B_{i}, h \in S, b+m h \in B_{i}$ iff m is even!

So: specifically consider the identity element 0 . Suppose that $0 \in B_{i}$. Then, we know that $0+m_{h} h=m_{h} h \in B_{i}$ iff m_{h} is even; more generally, we know that in fact

$$
\sum_{h \in S} m_{h} h \in B_{1} \text { iff } \sum_{h \in S} m_{h} \text { is even, }
$$

by considering parity arguments. But this is exactly the definition for weakly 2 -free!
Theorem 3 We have the following results for the chromatic numbers of rational spaces:

$$
\chi\left(\mathbb{Q}^{2}\right)=2, \chi\left(\mathbb{Q}^{3}\right)=2, \chi\left(\mathbb{Q}^{4}\right)>2 .
$$

Proof. So: by our earlier work, it suffices to show that

$$
S=\left\{(x, y) \in \mathbb{Q} \mid x^{2}+y^{2}=1, x=1 \text { or } y>0\right\}
$$

is weakly 2 -free, as this will give us a S-alternating 2-coloring of \mathbb{Q} - i.e. a partition of \mathbb{Q}^{2} into two parts B_{1}, B_{2} such that if $x \in B_{1}$, no points that are distance 1 from x are also in B_{1} !

So: look at solutions of $x^{2}+y^{2}=1$ in $\left(\mathbb{Q}^{+}\right)^{2}$: these are in fact pairs of numbers of the form $(a / c, b / c)$ where (a, b, c) is a primitive Pythagorean triple. Consequently, we always have that exactly 1 of a, b are odd, one is even, and c is odd.

So: think of S as something of the form $\{(1,0),(0,1)\} \cup\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{\infty}$, and examine any possible sum of the form

$$
n(1,0)+r(0,1)+\sum_{i=1}^{\infty} m_{i}\left(a_{i} / c_{i}, b_{i} / c_{i}\right)=(0,0)
$$

where all but finitely many of the m_{i} are zero. Then, we have that specifically

$$
n \sum_{i=1}^{\infty} m_{i} \cdot a_{i} / c_{i}=0
$$

and

$$
r+\sum_{i=1}^{\infty} m_{i} \cdot b_{i} / c_{i}=0
$$

So: let c be the product of all of the c_{i} where m_{i} is nonzero. This is a finite odd number (b/c all of the c_{i} 's are odd; thus, if we multiply through by 2 , we have

$$
n \sum_{i=1}^{\infty} m_{i} a_{i} \equiv 0 \quad \bmod 2
$$

and

$$
r+\sum_{i=1}^{\infty} m_{i} \cdot b_{i} \equiv 0 \quad \bmod 2 .
$$

Adding these together, we have that

$$
\begin{aligned}
& n+r+\sum_{i=1}^{\infty} m_{i} a_{i}+\sum_{i=1}^{\infty} m_{i} \cdot b_{i} \equiv 0 \quad \bmod 2 \\
\Rightarrow & n+r+\sum_{i=1}^{\infty} m_{i}\left(a_{i}+b_{i}\right) \equiv 0 \quad \bmod 2 .
\end{aligned}
$$

But in any pythagorean triple $(a, b, c), a+b$ is odd! So we have in fact that

$$
n+r+\sum_{i=1}^{\infty} m_{i} \equiv 0 \quad \bmod 2 ;
$$

i.e. that S is weakly 2 -free.

A similar result on Pythagorean quadruples (a, b, c, d) that says that exactly one of a, b, c are odd and d is odd will give us the result for \mathbb{Q}^{3}.

Conversely: for \mathbb{Q}^{4} : we have that

$$
3\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}\right)-1\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)-1(0,0,1,0)-2(0,0,0,1)=(0,0,0,0)
$$

while $3-1-1-2=-1 \neq 0 \bmod 2$. So the unit sphere here is not weakly 2 -free, and thus \mathbb{Q}^{4} is not 2-colorable.

