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1 Glossary

In these definitions, n denotes a natural number, G is some abelian group, h is an element
of G, and S is a subset of G.

n-coloring A n-coloring of an abelian group G is just a partition of G’s elements into n
different sets.

h-alternating A n-coloring of G is said to be h-alternating iff for every g ∈ G, the elements

g, g + h, g + h+ h = g + 2h, . . . g + (n− 1)h

are all different colors. (by kh, where k ∈ Z and h ∈ G, we mean the element of G
denoted by adding k copies of h together.)

S-alternating A n-coloring of G is said to be S-alternating iff it’s h-alternating for every
h ∈ S.

weakly n-free A subset S ⊂ G is called weakly n-free iff for any collection {mh}h∈S of
integers indexed by the elements of S, with only finitely many elements not equal to
0, we have the following implication:(∑

h∈S
mh · h = 0

)
⇒

(∑
h∈S

mh ≡ 0 mod n

)

2 Coloring Q2

Theorem 1 If S is weakly n-free, then there is a S-alternating n-coloring of G.

Proof. Let H be the subgroup generated by S. Color H by dividing it into subsets
B1, . . . Bn defined as follows:

Bk =

{∑
h∈S

mh · h

∣∣∣∣∣∑
h∈S

mh ≡ k mod n

}

Because S is weakly n-free, we know that these sets partition H. So: do the same thing
to all of H’s cosets! This generates a n-coloring of G that’s S-alternating, by construction;
so we’re done!

Theorem 2 If there is a S-alternating 2-coloring of G, then S is weakly 2-free.

1



Proof. So: a S-alternating 2-coloring is just a partition of G into two sets B1, B2 so that
for any g ∈ G, h ∈ S, exactly one of {g, g + h} lives in B1 and the other lives in B2.
Consequently, we have that for any b ∈ Bi, h ∈ S, b+mh ∈ Bi iff m is even!

So: specifically consider the identity element 0. Suppose that 0 ∈ Bi. Then, we know
that 0 +mhh = mhh ∈ Bi iff mh is even; more generally, we know that in fact∑

h∈S
mhh ∈ B1 iff

∑
h∈S

mh is even,

by considering parity arguments. But this is exactly the definition for weakly 2-free!

Theorem 3 We have the following results for the chromatic numbers of rational spaces:

χ(Q2) = 2, χ(Q3) = 2, χ(Q4) > 2.

Proof. So: by our earlier work, it suffices to show that

S = {(x, y) ∈ Q|x2 + y2 = 1, x = 1 or y > 0}

is weakly 2-free, as this will give us a S-alternating 2-coloring of Q – i.e. a partition of Q2

into two parts B1, B2 such that if x ∈ B1, no points that are distance 1 from x are also in
B1!

So: look at solutions of x2 + y2 = 1 in (Q+)
2
: these are in fact pairs of numbers of the

form (a/c, b/c) where (a, b, c) is a primitive Pythagorean triple. Consequently, we always
have that exactly 1 of a, b are odd, one is even, and c is odd.

So: think of S as something of the form {(1, 0), (0, 1)} ∪ {(ai, bi)}∞i=1, and examine any
possible sum of the form

n(1, 0) + r(0, 1) +
∞∑
i=1

mi(ai/ci, bi/ci) = (0, 0)

where all but finitely many of the mi are zero. Then, we have that specifically

n

∞∑
i=1

mi · ai/ci = 0

and

r +

∞∑
i=1

mi · bi/ci = 0.

So: let c be the product of all of the ci where mi is nonzero. This is a finite odd number
(b/c all of the ci’s are odd; thus, if we multiply through by 2, we have

n
∞∑
i=1

miai ≡ 0 mod 2
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and

r +
∞∑
i=1

mi · bi ≡ 0 mod 2.

Adding these together, we have that

n+ r +
∞∑
i=1

miai +
∞∑
i=1

mi · bi ≡ 0 mod 2

⇒n+ r +
∞∑
i=1

mi(ai + bi) ≡ 0 mod 2.

But in any pythagorean triple (a, b, c), a+ b is odd! So we have in fact that

n+ r +

∞∑
i=1

mi ≡ 0 mod 2;

i.e. that S is weakly 2-free.
A similar result on Pythagorean quadruples (a, b, c, d) that says that exactly one of a, b, c

are odd and d is odd will give us the result for Q3.
Conversely: for Q4: we have that
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− 1(0, 0, 1, 0)− 2(0, 0, 0, 1) = (0, 0, 0, 0),

while 3− 1− 1− 2 = −1 6= 0 mod 2. So the unit sphere here is not weakly 2-free, and thus
Q4 is not 2-colorable.
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