The Unit Distance Graph Instructor: Paddy

Lecture 1: The Unit Distance Graph Problem; Konig’s Lemma
Week 1 of 1 Mathcamp 2010

1 The Unit Distance Graph Problem

Question 1 Consider the following method for turning R? into a graph:
o Vertices: all points in R?.

e Fdges: connect any two points (a,b) and (c,d) iff the distance between them is exactly
1.

What is the chromatic number of this graph?

How can we even bound such a thing? Well: to get a lower bound, it certainly suffices
to consider finite graphs G that we can draw in the plane using only straight edges of length
1 — as our graph on R? must contain any such graph as a subgraph, examining these graphs
will give us some easy lower bounds!

So, by examining a equilateral triangle T', which has x(7') = 3, we can see that

x(R?) > 3;

similarly, by examining the following pentagonal construction (called a Moser spindle,)

we can actually do one better and say that
X(R?) > 4.

Conversely: to exhibit an upper bound on x(R?) of k, it suffices to create a way of
“painting” the plane with k-colors in such a way that no two points distance 1 apart get
the same color. Thus, by considering the following way of tiling the plane with hexagons,



we can see that seven colors are sufficient: i.e. that
2
X(R%) <7

These bounds on x(R?) took us a little more than a page to accomplish; as a result,
we might hope that completely resolving this question is something we could easily finish
within the lecture! (After all, it’s a relatively simple question: how hard can it be to find
the chromatic number of the plane, anyways?)

As it turns out: really, really hard. This problem — often called the Hadwiger-Nelson
problem in graph theory literature — has withstood attacks from the best minds in combi-
natorics since the 1950’s. In this class, we will detail several approaches people have taken
towards resolving this problem. Specifically, we hope to discuss the following topics:

e Konig’s lemma — how to apply it to the unit distance graph question.
e The chromatic number of Q2 (and in general, Q).

e The possible dependence of y(R?) on the axiom of choice!

e ”"Nice” colorings of the plane, and Thomassen’s 7-color-theorem

Chili levels will be around 2-2.5 for the first three lectures, and 3-3.5 for the last two (as
there’s a lot of elegant topological notation that we’ll need to discuss first.)

2 Konig’s Lemma

Lemma 2 Suppose that (T, ty) is a rooted tree at ty on Ng-many vertices, and suppose that
the degree of every vertex is finite. Then there is an infinite descending path in T starting
at to.

Proof. For ease of notation: let T, denote the tree acquired by taking v and all of the
paths that descend from v in our tree T'.

We create our path by induction. Start at £.

If we’ve made it to some vertex v: let v1,...v, be the descendants of v, and take as our
inductive hypothesis the claim that 7T, has infinitely many vertices in it. Then the trees



Ty, - .. Ty, form a partition of the vertex set of T, \ {v}: as this is an infinte set of vertices,
the pigeonhole principle tells us that one of these trees must contain infinitely many vertices!
Let T}, be that vertex, and go to v;.

Repeating this process yields an infinte path descending through T, starting at to.

This might seem like a rather trivial proof: the depth of its consequences, then, might
surprise you:

Corollary 3 Suppose that G is a graph on RNg-many vertices, such that any finite subgraph
of G can be k-colored. Then G can be k-colored.

Proof. Create a tree as follows: Enumerate the vertices of G as {v;}5°,, and let the levels
L,, of our tree be given by the collection of all k-colorings of {v; ...v,}. Draw an edge from
any k-coloring of {v; ...v,} to a coloring of {v; ...wv,41} iff the coloring of n + 1-vertices
extends our coloring of n vertices.

This is then a tree! It has infinitely many vertices, and the degree of any vertex is finite;
thus, by Ko6nig’s lemma, there’s an infinite path! This path — made of colorings that all
agree with each other — then gives us a k-coloring of all of G.

The above observation motivates the following question: for countable graphs, to demon-
strate k-colorability, it suffices to simply work on the collection of all finite graphs. Does
the same hold for uncountable graphs? Specifically, to find the chromatic number of the
plane, does it suffice to create an upper bound on all finite graphs embedded in the plane,
with edges given by straight line segments of length 17

It turns out that the answer here is yes! In HW #2, in fact, you will prove that this
result stems from Zorn’s lemma: in the meantime, consider that this remarkable result gives
us good reason to consider the following definition:

Definition. A graph G has Euclidean dimension n iff for every m > n, G can be embedded
in R™ so that any two points z,y € R™ are connected by an edge iff they’re distance 1
apart.

Using the language of this definition, the theorem that you’ll show on HW #2 can be
phrased as the following:

Corollary 4 x(R?) is equal to the mazimum chromatic number of the collection of graphs
with Euclidean dimension 2.

Consequently, to find the chromatic number of the plane, it suffices to just understand
the chromatic number of graphs with Euclidean dimension 2! Many current paths that
people are taking to resolving the unit distance graph problem go through the path of
classifying graphs of Euclidean dimension 2; if you’re curious about understanding the
Euclidean dimension of graphs further, I've got lots of handouts from one of the currently-
running projects for you.
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