The Unit Distance Graph	Instructor: Paddy
Homework 4: "Nice" Colorings	
Week 4	

1. Find a way to fold up a hexagon to get a one-hole torus; similarly, find a way to fold up both a 10 -gon and a 8 -gon to get a two-hole torus. Can you generalize this?
2. Find a "nice" coloring of the torus that uses only 7 colors.
3. Is there a value of n such that if G is a connected, locally finite, locally Hamiltonian graph with $\geq n$ vertices, it must have a vertex of degree ≥ 7 ?
4. In the statement of Thomassen's 7 -color-theorem, we said that if S was a surface and k was a natural number such that
(a) every noncontractible simple closed curve has diameter ≥ 2,
(b) every simple closed curve C with diameter <2 is such that the area of $\operatorname{int}(C)$ is $\leq k$, and
(c) the diameter of S is $\geq 12 k+30$,
then for any graph G planarly embedded on S, we need at least 7 colors to nicely color the faces of G.

Show that each of the above enumerated conditions are necessary: i.e. for each pair $\{(a),(b)\},\{(a),(c)\},\{(b),(c)\}$, find a surface S and graph G that satisfies this pair of conditions and yet can be nicely colored with ≤ 6 colors.

