The Unit Distance Graph Instructor: Paddy

Homework 1: The Unit Distance Graph Problem; König's Lemma

Week 4
Mathcamp 2010

1. Show that there is a way to tile the plane with squares and color them 1 through 7 , so that no two points that are distance 1 apart are the same color.
2. Using König's lemma, show that the interval $[0,1]$ is compact ${ }^{1}$ -
3. Define a domino as a square of unit area, with one integer attached to every edge, as depicted here:

Define a tiling of some region R in space by some set dominoes S dominoes as a way of filling up R by dominoes in S, so that adjacent dominoes have the same integer at any edge where they touch.

Using König's lemma, show that the following conditions for a set S of dominoes are equivalent:

- We can tile \mathbb{R}^{2} with dominoes in S.
- We can tile the upper-right hand quadrant $\left(\mathbb{R}^{+}\right)^{2}$ with dominoes in S.
- We can tile any $n \times n$-square with dominoes in S.

4. Find the Euclidean dimension of K_{n} minus an edge.
5. Find the Euclidean dimension of $K_{n, m}$.
6. Find the Euclidean dimension of the wheel graphs W_{n}.
[^0]
[^0]: ${ }^{1} \mathrm{~A}$ set S is called compact if for every cover of S by a collection of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i \in I}$, there is a finite subcover $\left(a_{1}^{\prime}, b_{1}^{\prime}\right) \ldots\left(a_{n}^{\prime}, b_{n}^{\prime}\right)$. A cover of a set S is a collection of sets $\left\{A_{i}\right\}_{i \in I}$ so that every element in S is also in one of the A_{i} 's.

