
Skolem’s Paradox Instructor: Susan / Paddy

Lecture 1: Model Theory

Week 1 of 1 Mathcamp 2010

In this pair of lectures, we’re going to prove that we can find a model of ZFC within a
countable universe; in other words, we’re going to show how we can encapsulate (amongst
other things) the entire ordinal hierarchy ω0, ω1, . . . within the universe N.

Wait, what?

1 Formalism!

Definition. A first-order language consists of the following:

• F , a collection of function symbols,

• R, a collection of relation symbols, and

• arity, a map from F ∪R → N that assigns an arity1 to each function and relation.

Example. The language of arithmetic:

L := {0, S,+, ·, <},

where 0 is a 0-ary function, S, the successor function, is a unary function, + and · are
binary functions, and < is a binary relation.

The language of posets:

L := {≤},

where ≤ is a binary relation (typically denoting order.)
The language of graphs:

L := {∼},

where ∼ is a binary relation (typically denoting that an edge exists between the two things
it relates.)

The word “language” suggests that we might want to create things like “sentences” out
of these languages. The following definitions make this concept precise:

Definition. Fix some countable set V ar of variables. Then, for a language L, we define a
term t as follows:

• x is a term, for any x ∈ V ar.

• If t1 . . . tn are terms and f is a n-ary function in F , then f(t1, . . . tn) is a term.

1the arity of a function or relation is just the number of arguments it takes in.
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Example. In the language of arithmetic, the following expressions are terms:

S(S(S(S(S(0))))), (x · x) + (y · y), (x+ y) + z) · 0.

What do these typically represent?

Definition. For a fixed language L and a countable set V ar of variables, we define an
atomic formula f as an expression of the form

R(t1, . . . tn),

where R is a n-ary relation in R∪ {=}. (= is a binary relation which we’ll throw into any
language, because it’s kind of necessary if we’re going to talk about mathematics.)

Example. In the language of arithmetic, the following expressions are atomic formulae:

S(0) < S(S(0)), x = x · x, (x+ y) · z = (x · z) + (y · z).

What do these formulas usually denote in mathematics?

Definition. For a fixed language L and a countable set V ar of variables, we recursively
define a well-formed formula f as one of the following expressions:

• f , where f is an atomic formula

• (¬A), (A ∧B), (A ∨B), (A⇒ B), (A⇔ B), where A, B are well-formed formulae.

• (∃xiA), (∀xiA), where A is a well-formed formula.

Example. In the language of arithmetic, the following expressions are well-formed formu-
las:

∀x∃y(x ≤ y)

∀x∀y∀z (((x < y) ∧ (y < z))⇒ (x < z)) ,

∀x∃y((x = 0) ∨ (x · y = S(0))),

∀x∃y1∃y2∃y3((x = y1) ∨ (x = y2) ∨ (x = y3)),

∀x∃y∃z((∃a(x = ((S(S(0)) · a) + S(0)) ∨ (∀b∀c((b · c = y) ∨ (b · c = z)⇒ (b = 1 ∨ c = 1)) ∧ x = y + z).

Translate these sentences into standard English. What are they representing?

So: in the above sentences, we’ve been asking for “interpretations” of these sentences.
How can we make this idea explicit?
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2 Structures

Definition. A structure M for a language L is the following:

• A nonempty set M , which we call the universe of the structure

• For every n-ary function element f ∈ F , a function fM : Mn →M .

• For every n-ary relation element R ∈ R, a relation RM ⊂Mn.

In other words, M is just a way of interpreting this language L – i.e. a way of assigning
meaning to L’s symbols (which, intrinsically, don’t have any meaning on their own.)

Example. Consider the following different interpretations of the language of arithmetic:

1. Consider the integers Z as our universe, where we interpret

• 0 as the constant function that returns 0,

• S as the unary function that returns x+ 1 on input x,

• + as the binary function that takes in two integers and returns their sum,

• · as the binary function that takes in two integers and returns their product, and

• < as the binary relation that evaluates (x, y) to true iff x is less than y.

2. Consider the real numbers R as our universe, where we interpret everything just as
above: i.e. interpret

• 0 as the constant function that returns 0,

• S as the unary function that returns x+ 1 on input x,

• + as the binary function that takes in two real numbers and returns their sum,

• · as the binary function that takes in two real numbers and returns their product,
and

• < as the binary relation that evaluates (x, y) to true iff x is less than y.

3. Alternately, consider again Z as our universe, where we interpret

• 0 as the constant function that returns 0,

• S as the unary function that returns x− 1 on input x,

• + as the binary function that takes in two integers and returns their sum,

• · as the binary function that takes in two integers and returns their product, and

• < as the binary relation that evaluates (x, y) to true iff x is greater than y.

This looks much like our first structure, except our ordering is backwards! – i.e. we
think that −2 > −1 > 0 > 1 > . . . in this model.

• Finally, consider the following rather “stupid” model of the language of arith-
metic, again set in the universe of Z:
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• 0 as the constant function that returns 0,

• S as the unary function that returns 0 on input x,

• + as the binary function that takes in two integers and returns 0,

• · as the binary function that takes in two integers and returns 0, and

• < as the binary relation that never returns true.

This is indeed a structure! Just, um, not remotely what we’d like.

So: as demonstrated above, structures can be rather perverse and strange things. For
example, it’s possible to build things in the language of arithmetic that don’t look at all
like what we’d like! How can we fix this?

Well: given a structure S, we can now interpret various well-formed formulas in that
structure! I.e. consider again the structure S = 〈Z, 0, S,+, ·, <〉, where we interpret every-
thing normally (i.e. we work in the integers with addition/multiplication/sucessor/zero/orderings
all as normal.)

Then, the sentence

ϕ = ∀x∃y(x ≤ y)

is just the claim that for any x, there’s always a larger y in our universe! This is clearly
true in our structure: to denote this, we write

S |= ϕ.

Conversely, consider the sentence

φ = ∀x∀y(¬(x = y)) ∨ (∃z(x < z < y) ∨ (y < z < x)).

This says that for any two distinct elements of our structure, that there is a third element
between them; a statement that is clearly false for the integers (i.e x = 1, y = 2). In this
case, we write

S 6|= ϕ.

So: sentences give us a way to talk about what things are “true” and what things are
“false” for a given structure! In specific, consider the following definition:

Definition. For a structure S, define the theory of S, Th(S), to be the collection of all
well-formed formulas ϕ such that S |= ϕ.

Earlier, when we studied just languages, we saw that it was really easy to “misinterpret”
a language: i.e. there were lots of ways in which the symbols we wrote down could mean
something that we didn’t.

Theories give us a way to get around this stumbling block! How? Well: suppose you
want to talk abstractly about some specific group: i.e. take for example the group 〈Z5, 0,+〉,
the cyclic group of order 6, and consider it as a structure. What’s its theory?
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Well, enumerating everything in its theory is impossible, if only for the trivial reasons
that if φ is a well-formed formula that Z6 satisfies, then ∃yφ is such a formula; thus, by
nesting ∃ we can get infinitely many formulas2 However, we can see that the following
formulas are true of Z6:

M |=∀x∀y∃z(x+ y = z)

|=∀x∃y(x+ y = 0)

|=∀x∀y∀z((x+ y) + z = x+ (y + z))

|=∀x(x+ 0) = x

|=∀x∀y(x+ y = y + x)

|=∀y∃y1 . . . ∃y6

∧
i 6=j

¬(xi = xj)

 ∧( 6∨
i=1

(y = xi)

)

How many structures satisfy these sentences? Well, the first 5 are precisely the axioms
for an abelian group, and the sixth specifies that the set has precisely 6 elements in it: so
any structure that satisfies these sentences must in fact be Z6, up to isomorphism!

Thus, if we want to abstractly capture the idea of what it means to “be” something,
a theory seems like a good idea! In other words, if two objects satisfy the same set of
well-formed formulas, then it seems like they must have a high degree of similarity.

Must they always be the same, though? To answer this question, consider the structure
S = 〈N, <〉, the natural numbers under their typical ordering. This structure satisfies
certain formulas, like

S |=∀x∃y(x < y)

|=∃y∀x(y < x) ∨ (y = x)

|=∀x∃y∀z(x < y) ∧ ((z < x) ∨ (z = x) ∨ (z = y) ∨ (y < z))

|=∀x∀y∀z((x < y) ∧ (y < z))⇒ (x < z)

|=∀x∀y((x < y) ∨ (y < x) ∨ (x = y))

|=∀x∀y¬((x < y) ∧ (y < x))

|=∀x¬(x < x).

However, these formulas all satisfy the structure 〈R, <wo〉 with respect to some well-
ordering <wo of R – and, as it turns out, there’s no way3 to create a well-formed-formula
that allows us to distinguish between the two!

So, even if we have two structures that satisfy all of the same sentences, they might
still be different. A natural question, then, is to consider all of mathematics! – in other

2There is a way of talking about a theory having a finite axiomatization, in which finitely many formulas
can be found that imply everything that’s true in the theory: but that’s not where we’re headed in this
class.

3If you’d like to see why, come talk to me and I can point you towards some papers!
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words, look at the structure that’s given by the model of mathematics given by ZFC, the
Zermelo-Fraenkel set theory axioms + the Axiom of Choice. Are there different structures
of ZFC? Are there new ways of interpreting the basic language of mathematics – new ways of
creating the ordinals, real number line, and such things – that are fundamentally different?
Is there, as we claimed at the start of lecture, *really* a way of creating a structure with
universe N that models all of ZFC?

Tune in next time to find out!

Skolem’s Paradox Instructor: Susan / Paddy

Homework 1: Model Theory!, the HW

Week 4 Mathcamp 2010

1. Write a sentence ϕ in the language L = {R}, where R is a binary relation, that says
that a structure M |= ϕ iff M has an even number of elements in its universe (or M
has an infinite universe.)

2. Write a sentence ϕ in the language L = {R, f}, where R is a binary relation and f is
a binary function, that says that a structure M |= ϕ iff M has n2-many elements in
its universe, for some n (or M has an infinite universe.)

3. Write a sentence ϕ in the language L = {R}, where R is a binary relation, that says
that a structure M |= ϕ iff R is an equivalence relation on M .

4. Suppose that S is a structure for the language {<} that satisfies the following three
sentences:

∀x∃y(x < y)

∀x∀y∀z((x < y) ∧ (y < z)⇒ (x < z))

∀x¬(x < x)

What can you say about the size of S?

5. Let S = 〈N, <〉 be the normal structure of the natural numbers under the ordering <,
and let T = 〈N, <T 〉 be the ordering on N defined as follows:

(n <t m) holds iff (n,m are both even or both odd, and n < m) or (n is even and m
is odd.)

Find a sentence ϕ in the language {<} such that S satisfies ϕ,, but T does not.
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