Homework 1: Model Theory!, the HW

Week 4

Mathcamp 2010

- 1. Write a sentence φ in the language $\mathcal{L} = \{R\}$, where R is a binary relation, that says that a structure $M \models \varphi$ iff R is an equivalence relation on M.
- 2. Write a sentence φ in the language $\mathcal{L} = \{R\}$, where R is a binary relation, so that the following holds: If M is a structure that models φ , then there must be a $n \in \mathbb{N}$ such that the size of M's universe is 2n.
- 3. Write a sentence φ in the language $\mathcal{L} = \{R, f\}$, where R is a binary relation and f is a binary function, so that the following holds: If M is a structure that models φ , then there must be a $n \in \mathbb{N}$ such that the size of M's universe is n^2 .
- 4. Suppose that S is a structure for the language $\{<\}$ that satisfies the following three sentences:

$$\begin{aligned} &\forall x \exists y (x < y) \\ &\forall x \forall y \forall z ((x < y) \land (y < z) \Rightarrow (x < z)) \\ &\forall x \neg (x < x) \end{aligned}$$

What can you say about the size of S?

- 5. Let $S = \langle \mathbb{N}, \langle \rangle$ be the normal structure of the natural numbers under the ordering $\langle \rangle$, and let $T = \langle \mathbb{N}, \langle T \rangle$ be the ordering on \mathbb{N} defined as follows:
 - $(n <_t m)$ holds iff (n, m are both even or both odd, and n < m) or (n is even and m is odd.)

Find a sentence φ in the language $\{<\}$ such that S satisfies φ , but T does not.